The Crowd Lab had a paper, titled, “Second Opinion: Supporting last-mile person identification with crowdsourcing and face recognition,” accepted for the upcoming AAAI Human Computation and Crowdsourcing (HCOMP 2019) conference at the Skamania Lodge in Stevenson, WA, USA, October 28-30, 2019. The conference had a 25% acceptance rate.
Ph.D. student and lead author Vikram Mohanty will present the paper, co-authored with Dr. Luther and Crowd Lab undergraduate researchers Kareem Abdol-Hamid and Courtney Ebersohl. Here’s the paper’s abstract:
As AI-based face recognition technologies are increasingly adopted for high-stakes applications like locating suspected criminals, public concerns about the accuracy of these technologies have grown as well. These technologies often present a human expert with a shortlist of high-confidence candidate faces from which the expert must select correct match(es) while avoiding false positives, which we term the “last-mile problem.” We propose Second Opinion, a web-based software tool that employs a novel crowdsourcing workflow inspired by cognitive psychology, seed-gather-analyze, to assist experts in solving the last-mile problem. We evaluated Second Opinion with a mixed-methods lab study involving 10 experts and 300 crowd workers who collaborate to identify people in historical photos. We found that crowds can eliminate 75% of false positives from the highest-confidence candidates suggested by face recognition, and that experts were enthusiastic about using Second Opinion in their work. We also discuss broader implications for crowd–AI interaction and crowdsourced person identification.