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ABSTRACT

While training a machine learning model, data scientists often need
to determine some hyperparameters to set up the model. The values
of hyperparameters configure the structure and other characteris-
tics of the model and can significantly influence the training result.
However, given the complexity of the model algorithms and the
training processes, identifying a sweet spot in the hyperparameter
space for a specific problem can be challenging. This paper charac-
terizes user requirements for hyperparameter tuning and proposes a
prototype system to provide model-agnostic support. We conducted
interviews with data science practitioners in industry to collect user
requirements and identify opportunities for leveraging interactive
visual support. We present HyperTuner, a prototype system that
supports hyperparameter search and analysis via interactive visual
analytics. The design treats models as black boxes with the hyper-
parameters and data as inputs, and the predictions and performance
metrics as outputs. We discuss our preliminary evaluation results,
where the data science practitioners deem HyperTuner as useful and
desired to help gain insights into the influence of hyperparameters
on model performance and convergence. The design also triggered
additional requirements such as involving more advanced support
for automated tuning and debugging.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques—Hyperparameter Tuning; Human-centered
computing—Visualization—Visualization design and evaluation
methods

1 INTRODUCTION

The increasing availability of big data is invigorating a more preva-
lent use of machine learning (ML) models among a wide variety of
users to solve real-world problems. As the demand for application-
specific ML models increases, tools to enable users to efficiently and
confidently build ML models have become increasingly important.
Recent research in the VIS community has highlighted various chal-
lenges experienced in the design and application of ML models that
call for better visual analytics support in the current tools [25].

Building a suitable ML model is an expensive and iterative pro-
cess. It includes data preparation, feature engineering, model im-
plementation, hyperparameter tuning, debugging, validation, and
other project-specific tasks. The same model algorithm often needs
different hyperparameter settings when training on different datasets
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or serving different analysis goals. In many deep learning models,
hyperparameters such as the number of layers or the dropout rate
can dramatically affect performance.

Prior visual analytics research on supporting the model tuning fo-
cuses on the following three aspects. 1) Visualizing model structures
with prior knowledge [17,28]. This can be very useful to understand
the model components and their relationships so that data science
practitioners make educated decisions on hyperparameter tuning.
The disadvantage is that such visualization is developed for one
specific model and barely generalizable to a different model. 2)
Visualizing model predictions with additional interpretable models
[13,23]. This approach is data-oriented and model-agnostic, learning
a local interpretable model around the predictions to explain ML
models. This can help data scientists reverse-engineer the model to
detect which part is not performing well and conduct targeted hyper-
parameter tuning. It is generalizable across models but expensive
to train the additional local models and have to be applied to one
ML model at a time. 3) Algorithmic approaches [6, 30]. Auto-
matic hyperparameter tuning like surrogate-based optimization takes
advantage of the growing capability of computing infrastructures
and higher evaluation budgets. However, while automated hyper-
parameter tuning was a key feature requested by data scientists we
interviewed, they also expressed a need to develop intuition through
visualization of experiments.

To understand the empirical hyperparameter tuning process, we
conducted interviews with six data science practitioners in industry
who work in different job roles. We learned that data science practi-
tioners usually spend a considerable amount of time manually tuning
hyperparameters, taking notes on paper notebooks or building their
own visualizations due to the limited visual analytics support. We
collected the common practices, user needs, and pain points in the
interviews, and characterized the findings as a workflow of the key
steps. We identify the sub-steps and leverage points, and demon-
strate the corresponding designs via a prototype. We evaluated the
prototype with the same group of data science practitioners, who
provided positive and constructive feedback for improvement. The
paper concludes with the result of this first evaluation and future
directions of improvement and extension.

The contributions of this work are listed as follows:

1. Analyzed real-world user practices and needs for effective
hyperparameter tuning.

2. Formalized the hyperparameter tuning process as a workflow.

3. Implemented and evaluated a prototype to support hyperpa-
rameter tuning.

Consistent with the themes of the workshop, this research sits at
the intersection of the Machine Learning (ML) and Visual Analytics.
It focuses on empowering data science practitioners via new types
of user interactions and visual analytics tools. In particular, it aims
at guiding and advancing the development of visual analytics tools
for interactive hyperparameter tuning.



2 PROBLEM IN CONTEXT

The set of problems we focus on in this paper appears in the context
of training a machine learning model to answer some questions re-
garding a dataset. For example, given all the customers of a company
in the past 10 years, who are likely to extend their subscriptions,
and who might cancel and leave? When building an ML model to
make predictions on customer churn, the data science practitioners
first acquire, clean, and enrich the customer data (Step 1 in the top
half of Figure 1). Next, they engineer the relevant features of the
customers to be used in making predictions (Step 2 in the top half
of Figure 1). They also need to select what ML model to use: more
traditional models like a decision tree, or some complicated neural
network models? (Step 3 in top half of Figure 1). While training
the selected model, many models have hyperparameters that must
be set and tuned. For example, a decision tree needs a criterion
function (Gini index or entropy) to measure the quality of a node
split, a maximum depth of the tree, and other hyperparameters. A
neural network can have many hyperparameters such as the number
of layers, which activation function to use, and so on (Step 4 in the
top half of Figure 1). With the hyperparameters set, the models are
trained and validated with a subset of the customer data (Step 5 in the
top half of Figure 1). If not satisfied, the data science practitioners
iterate by returning to any of the prior four steps, depending on the
results. Finally, when satisfied, they can share the trained model
with other data analysts and domain experts or embed the model into
a business process.

We focus on the problem of hyperparameter tuning: see steps 4
and 5 and the bottom half of Figure 1. It’s worth prefacing, first,
the distinction between two types of parameters. The first is the
hyperparameters, which are set by the users before the training
process begins. The second is the learned parameters, for example,
“weights” of the data features the model learns from the dataset.

At the bottom half of Figure 1, we indicate the three leverage
points of prior research to support hyperparameter tuning and, in
this context, our focus in this paper. The first is to visualize the
model structure (e.g., what layer of the neural network model is
processing what data features [18]; see the vertical line with label
1). The second is to learn a local model around the model prediction
(e.g., what features an image-recognition model captured to classify
a specific image [23]; see the vertical line with label 2). The
third is to algorithmically optimize hyperparameter values with an
objective function (see the vertical line with label 3). In this
work, we treat a ML model as a black box, and combine the second
and third leverage points via interactive visual analytic to support
hyperparameter tuning (see the vertical line with label 4).

3 RELATED WORK

Hyperparameter tuning is an essential but time-consuming step in
model training. In order to get an ML model to work well in practice,
the hyperparameters need to be tuned when training the model and
the best settings usually differ for different datasets. Revising the
configuration of existing learning paradigms can sometimes lead to
more improvement in model performance than inventing new ones
[11, 20]. However, evaluating the effect of a given hyperparameter
setting is expensive since it usually requires the model to be trained
and tested, which is often computationally costly and may have
random factors that make the evaluation even more difficult.

3.1 Visual Analytics Support in Parameter Search
Exploring the relationships between several explanatory variables
and one or more response variables has been a prevalent challenge
in many different application domains, including meteorology [21],
biology [22] and medical science [5]. Statistical approaches such
as the response surface methodology (RSM) [8] has been widely
employed in developing solutions to those problems, and is further
developed into the “design and analysis of computer experiments”,

and “visual parameter space exploration” [26] in the visual analytics
community. Assessing the optimality of a black-box model often
involves visualizing and sampling from multi-dimensional spaces,
using surrogate and/or simulation models, contrasting the trade offs
of several input settings, as well as understanding the influence of the
inputs on the outputs. With these shared challenges, the frameworks
and strategies developed for non-ML applications are generally ap-
plicable to hyperparameter tuning as well. For example, the four
navigation strategies proposed by Sedlmair et al. [26] can also serve
most of the exploration and analysis needs in the hyperparameter
tuning process. However, hyperparameter tuning optimizes a ma-
chine learning model by steering the initial setting before the training
process. This is different from optimizing learned parameters based
on the data. Take a simple polynomial model, y = axk + b, as an
example. The value of parameter a and b are adjusted to fit a given
dataset, while the k is preset by the user to define the model structure.
If the model performance is consistently bad for a certain k value,
more tuning will be needed to determine a more appropriate k value.
Unlike tuning learned parameters as in non-ML problems, users
are required to have considerably abundant knowledge about the
model algorithm in order to understand the relationship between the
hyperparameter setting and the training process, in order to explore
the influence of the hyperparameters to the model performance.

Prior work on hyperparameter tuning, or hyperparameter search,
can be broadly divided into two camps: automated approaches devel-
oped by the Machine Learning or AI researchers (e.g., see review in
[10]) and human-in-the-loop approaches developed by researchers
working between Machine Learning and Visual Analytics (e.g., see
review in [24]), as the one proposed in this paper. Below we review
these two camps of research.

3.2 Automated Approaches

Claesen et al. [10] refer to the vision of a fully automated, self-
configuring learning strategy, including hyperparameter search, as
still the “holy grail of machine learning”. Nevertheless, automatic
approaches are showing increasing success on tuning hyperparam-
eters of some models [6, 30]. Important contributions of the work
done in this camp includes the formalization of key concepts (e.g.,
hyperparameter) [9], the identification of model tuning tasks that
can be automated, and consequently software modules that imple-
ment specific hyperparameter optimization methods, such as Scikit-
learn [19], or packages that focuses on Bayesian methods (e.g., see
https://bayesopt.github.io/), such as Hyperopt [7] and ParamILS [16].
On the commercial end of this camp, sample software tools include
https://cloud.google.com/automl/ and https://www.datarobot.com/.

While there are important advancements in the automated ap-
proaches camp, it’s important to recognize that there are many prac-
tical scenarios where such automatic approaches are not applicable.
An exhaustive grid search is computationally expensive and time-
consuming; random search and surrogate-based model optimization
require enough trials for a given dataset. More advanced sampling
techniques such as latin hypercubes and low-discrepancy sequences
also suffer from the same problems. Furthermore, implementing
automatic approaches usually requires writing additional scripts with
an in-depth understanding of the model and search algorithms, which
excludes non-expert users of ML models or novice practitioners. As
we learned in the interviews, the tuning process is either highly
inefficient with manually keeping a notebook, or relies on automatic
optimization algorithms that are usually expensive to implement
without guarantee of success (convergence). Even when automated
approaches are used, data scientists expressed a desire to combine
both automated and manual iteration in one framework to help keep
track of experiments and develop some intuition for potential model-
ing avenues to explore. In this work, we investigate where and how
to leverage human guidance to improve the hyperparameter tuning
efficacy.



Figure 1: Problem in context. The top half (context): overall work process by a data science practitioner of addressing hard questions by applying
an ML model to a dataset [24], p. 642. The bottom half (problem): model building via hyperparameter tuning and result validation.

3.3 Human-in-the-loop Approaches
The current reality of hyperparameter tuning is highly human-driven.
Hyperparameter tuning is usually performed manually [9] following
rules-of-thumb and experience accumulated through practice [14,
15]. Especially with complex models, the current trial-and-error
process is inefficient in terms of the time spent and the computational
load [22], and does not favor reproducibility, knowledge transfer,
and collaboration (e.g., [10]). To address these limitations, as well
as increasing the transparency of ML models to humans, current
research efforts in the human-in-the-loop camp have focused on
three visual analytics foci: model structure, model prediction, model
performance metrics.

Visualizing model structure. Many visualization techniques
have been developed to help users understand the structure of dif-
ferent ML models. Liu et al. [17] developed a visual analytics
system that shows all the layers, neurons, and other components of
the convolutional neural networks, as well as how the training data
is processed within. GANViz [29] visualizes the adversarial train-
ing process of generative adversarial nets with linked coordinated
visualizations. Rather than devoting to an in-depth understanding
of a specific model, we investigate a more light-weight and general-
purpose support for model-agnostic hyperparameter tuning.

Interpreting model prediction. There is an evolving research
interest in model-agnostic interpretation, that focuses on understand-
ing model prediction behaviors. Riberio et al. developed LIME [23],
a model-agnostic approach that learns an interpretable model locally
around the prediction. This framework is generalizable to different
models and dataset, and efficiently enhances the interpretability of
a given model. However, before drilling down into such expensive
interpretation and copious details, we focus on comparing many
alternative models and identifying better ones.

Interpreting model performance metrics. The lack of support
for evaluating the performance of ML models has been known for at

least a decade now. For example, Patel and collaborators [12] in a
2008 study with data scientists observed that tuning ML models is an
iterative and exploratory activity. It was hard for the data scientists in
the study to track performance across iterations, which makes tuning
process challenging. They argued that ML tools should include
more suitable visualizations to help data scientists with their work.
A recent attempt to provide more suitable visualizations of model
evaluations metrics and model comparisons was made by Tsay and
colleagues [27]. This is a research area that we expect will receive
increasing attention in the near future.

4 HYPEPARAMETER TUNING REQUIREMENTS

In the first phase of the project, we interviewed data science practi-
tioners in industry to investigate their hyperparameter tuning prac-
tice, as ML experts and as colleagues of domain experts with busi-
ness needs and knowledge. In this section, we characterize the key
steps of the process and user needs not yet addressed by current
tools.

4.1 Method
We interviewed six data science practitioners. While all were ex-
perienced in hyperparameter tuning, they held various job roles,
including “data scientist”, “data science engineer and researcher”,
“machine learning engineer”, and “software engineer for a data ana-
lytics product”. We will refer to the six interviewees as P1, P2, P3,
P4, P5, P6

4.2 Hyperparameter Tuning: Practice
Our interviews may be affected by potential sampling biases: the
interviewees were based in the United States and the UK; they
worked for a software company that builds applications for machine
learning and analytics on big data. However, the sample included
a good variety of job roles and, we believe, can represent the need
of a broader range of data science practitioners in the industry (i.e.,



Figure 2: A text file showing some experiment history from P4

Figure 3: Example visualization from P4

their colleagues and customers in other companies). In this first
phase of the project, we aimed at a qualitative characterization of
the hyperparameter tuning process and user requirements rather than
quantitative findings.

The procedure of each interview followed a semi-structured
method and included two sub-sessions. The first sub-session, lasting
about 15 minutes, investigated the job role and working context of
the interviewee:

1. Please briefly describe your job role.

2. Please describe the most common tasks for your job role.

The second sub-session, lasting about 45 minutes, investigated the
model tuning practices:

1. Please describe example projects, where you needed to train
and tune models.

• What was your dataset, model and hyperparameters,
evaluation metrics?

• What do you look at to decide if the model can be better?
What and how to tune?

• How many experiments do you typically compare?

2. How would you perform the above task with other models?
(generalizability of 1)

3. What kind of assistance would help you with the tasks you
described?

We asked follow-up questions depending on the interviewee’s re-
sponse. In addition, we asked the interviewees to introduce us to the
tools they use and, when possible, provide us with examples of their
projects (e.g., outputs from hyperparameter tuning in a representa-
tive project, see Figure 2 and 3). Each interview was recorded and
transcribed.

Two of the co-authors performed a qualitative analysis on each
transcript and summarized common themes (i.e., common steps,
tools, and pain points). The themes were then validated with other
two co-authors, who are data science domain experts.

4.2.1 How many tuning iterations or rounds do you do?

The interviewees referred to a model tuning task as a project involv-
ing multiple experiments, which may last several hours or days. Two
of the six data scientists (P1 and P6) mentioned the strategy of start-
ing from tuning simple models first (e.g., a logistic regression) and
then, based on resources available (i.e., time and computation) vs.
performance required, moving to tune more complex models. Gen-
erally, a model tuning project would require at least 20 experiments
(P1) and might take as many as about 60 experiments in the case of a
deep learning model (P4). This number could be significantly higher
if parts of the tuning and experimental process were automated.

4.2.2 What hyperparameters do you tune? How?

The number of hyperparameters differs model by model. In the case
of a deep learning model, there are often dozens of hyperparameters.
The interviewees would focus on tuning “a dozen or more” (P4)
hyperparameters. It usually relies on the data science practitioners
to plan and “keep everything as a changeable parameter or knob”
(P4) in their code.

The data science practitioner who shared the Figures 2 and 3
describes his typical hyperparameter tuning process below. Not
all hyperparameter values need to be tuned, such as the learning
rate. Some commonly tuned hyperparameters include the optimizing
algorithm, dropout rate, the number of layers, the width of each layer,
to name just a few. “I do not really try to fix those right off the bat.
Instead, I define limits, so I bound what values I think they could
take, and then I either do a grid search or a random parameter
search”. In the example project P4 described to us, it usually takes
about 6 hours to train a model with one set of hyperparameters. In
addition, there’s only a certain amount that can be parallelized due
to the limited CPU resources. In such situations, random parameter
search is more commonly used because the results would converge
faster, and provide a better sense of the hyperparameter space.

When deciding if a specific hyperparameter should be tuned more,
P4 reported that he usually holds “all other features constant [across
experiments], and just experiment with one.” If the results do not
change much, this hyperparameter might not be worth further tuning.
For example, some users find learning rate not very important to
affect their results. It is useful to figure such things out sooner, to
invest computation resources into tuning other hyperparameters.



Figure 4: Formalized workflow of the hyperparameter tuning process.

4.2.3 What performance metrics do you track? How?

The commonly used performance metrics for supervised models
include accuracy, precision, recall, and ROC curves. Other examples
are learning curve (to check the slope and when it gets saturation),
training loss vs. validation loss (to check when the latter increases
as the first keeps decreasing to detect overfitting).

4.2.4 Workflow

The six data science practitioners pointed to a similar underlying
process of hyperparameter tuning. What we learned was consistent
with the reports from the literature about the general process, which
we summarized at the top of Figure 1. An interviewee (P1) summa-
rized the process as follows: “We go through a typical data science
workflow, which is to clean data, train a model, and then open it up
over an API to a web front-end.”. We formalize the hyperparameter
tuning process as a workflow with five sub-steps (shown in Figure
4), with the first four forming a loop.

Sub-step 1: Set hyperparameter values. At the outset of the
workflow (the first square in Figure 4), the ML experts initiate the
first batch of experiments by setting hyperparameter values based
on their understanding of the data, the model algorithm, and the
problem to solve. This sub-step reoccurs later as a restart of the loop
if, after sub-step 4 (the fourth square in Figure 4), the ML expert
decides that more tuning is still needed.

Sub-step 2: Hypothesize the impact of tuned hyperparam-
eters with results of all experiments. At this stage the ML
expert has just run a batch of experiments and wants to answer
two questions: 1) What are the most impactful hyperparameters
in these experiments? Is hyperparameter X relevant? 2) How do
the hyperparameters influence the performance of the model and
what performance metrics to consider? This sub-step is performed
with the support of summative reports of the hyperparameters and
performance metrics for a full batch of experiments.

Sub-step 3: Validate hypotheses with details of individual
experiments. The ML expert may need to drill into the details of
specific experiments to test the hypotheses developed in sub-step 2:
1) What do the details of this experiment say about my hypotheses?
2) Do I trust the predictions of this models by looking at the results?
This sub-step represents an in-depth investigation that starts and
ends back in sub-step 2 (see bidirectional arrow in Figure 4). It is
performed with the support of detailed reports on hyperparameters
and performance metrics from an individual experiment. Multiple
micro-iterations occur between sub-steps 2 and 3, typically.

Sub-step 4: Decide if more tuning is needed. Once the ML
expert has analyzed the results of the current batch of experiments,
s/he needs to decide: 1) Does the (best) model performance meet
my expectations? If not, 2) Will more training improve the model
performance and will it be worth the efforts, given the resources?
This sub-step is performed with the support of the summative and
detailed reports from the prior two steps

Sub-task 5: Review and Save Progress. If the ML expert
decides, in sub-step 4, that no more tuning is needed, then he answers
these questions: 1) How well am I able to recall the tuning process
and communicate its results? 2) How useful are the records of my
tuning progress? What is missing? What is superfluous? This
sub-step is performed with the support of a final project-level report
summarizing all the experiments from all batches plus any comments
or reminders the practitioner recorded during the tuning process.

4.3 Hyperparameter Tuning: Support Needed
Following the workflow in Figure 4 we identified at each step needs
for visual analytics support that are not fully addressed by current
data science tools.

4.3.1 Analytics of batches of experiments
One of the most evident needs emerging from the interviews is the
need to aggregate results across experiments and conduct group-
level comparisons among the experiments in a batch. The data
science practitioners need visualizations that help determine which
hyperparameters values are satisfying and which ones require more
exploration. They also need to interactively customize the visu-
alization. In the words of an interviewee (P2): “Visualization is
to bring human interpretation in hyperparameter tuning... build
a visualization that is a natural interpretation of the actual data
passed in, ... Users always want variation, they should be allowed
to customize the visualization”. Currently, these visualizations are
created manually and in ad hoc fashion. A data science practitioner
(P1) summarize his current practice as follows: “You try different
combinations of hyperparameters, keep track of the performance,
and visualize it somehow”.

4.3.2 Analytics of individual experiments
A second general need is a support to investigate results and metadata
of an individual experiment (trained model). As shown in Figure 4,
these investigations happen as drill-down analysis to test the current
working hypotheses. For example, the user may need to understand
the training history of an experiment and if the model predictions
can be trusted. Additionally, s/he may want to review the metadata
as a reminder of the hyperparameter values used. If the experiment
is worth tracking for later comparisons, s/he can annotate some notes
from the analysis. In particular, three of the six practitioners (P1,
P4, P6) mentioned the need to review interpretability details such
as examples of misclassifications by a supervised ML model. P1:

“Interpretability is also an important factor to track when turning
hyperparameters. Is it predicting the right class for the right reason?
I would want to get examples which get classified correctly or not.”
[23].

With computationally expensive experiments that may take hours,
analysis of the training progress is desirable. Two interviewees
explicitly pointed to the need for “early stopping” (P1) of ineffective
experiments. P1: “If I see the loss curve jumping all over the
place, or very noisy in comparison to the other loss curves, I don’t
even need to ever look at that model again, I just thought it out
immediately”.



4.3.3 Informing the next round of exploration
A third general need revolves around the support for making complex
decisions. The decision is whether to run a new batch of experiments
and, if so, what new set of hyperparameter values to use, given the
results of the current batch of experiments. One of the challenges is
to monitor and reason about many hyperparameters at the same time.
This is particularly evident when training deep learning models. The
data science practitioners have to restrict the number of variables
to keep in mind due to limited cognitive capacity. When deciding
what small subset of the hyperparameter space to explore next,
they need to capture the insights from the analysis of the existing
experiments (see the first two needs, above). It is worth remarking,
about this need, that the decision consists in balancing observations,
expectations, and resources: i.e., the performance observed in the
current batch of experiments (observations), the desired level of
performance given the problem (expectations) and the resources such
as time and computation available to the project (resources). While
the observations are in the tool, the expectations and resources are
mostly implicit knowledge in the head of the data science practitioner
- herefrom the need for visual analytics tools that involve the human.
As summarized by P4: “There’s never been a point in any project
I’ve ever worked on where hyperparameter tuning was done. It’s
really just I [judging if] I have seen enough and I’m willing to
make a decision about what the hyperparameter should be [to meet
expectations]. So its more of a question of timelines and schedules”.

4.3.4 Project-level memory and communication
The fourth need pertains to memory and communication support at
the project level. About memory support, P5 describes the needs to
capture what was done to easily recall the analysis trajectory later:

“Now in the report, we have the accuracy (performance), but we do
not capture what I changed. Over time we will probably forget what
weve done, such as the numbers we have changed. So being able to
track them is important. We will be able to go back and see how the
model has improved. [A] ‘rewinding’ [capability].” Several inter-
viewees (e.g., P1, P6) also mentioned that a project-level summary
or report on all experiments should allow filtering, annotating, and
comparing experiments: e.g., delete or archive experiment, mark as
promising, filter, annotate, tag, select and compare two experiments.
For example, P1 reports that his current practice is to compare two
experiments at a time, in detail. P6 reports that, at the end of her
tuning project, she typically selects the best 2-3 experiments from
the list and then runs the models on a new dataset, as a final “blind
validation” step. Some interviewees suggested that project-level
reporting would help collaborate with colleagues and communicate
the results to the domain experts who requested the model. In P5’s
words, “to be able to communicate to the business sponsors outside
our team how well the model is performing, and also, we would use
it internally for [guiding future] tuning [...] [and] do a comparison
between models as well”.

5 HYPERTUNER PROTOTYPE AND EVALUATION

To explore how to leverage visual analytics support in the hyperpa-
rameter tuning workflow (Figure 4), we implemented and evaluated
HyperTuner, an interactive prototype.

5.1 Implementation and Example Data
HyperTuner is a web-based application implemented on the Django
framework [3]. The visualization components are developed with
Bokeh [4] and D3.js [1].

Core Concepts in the Prototype. In the prototype, a user
launches a training script with multiple hyperparameter settings as a
Run, where each setting results in an Experiment.

The user interactions supported around a specific Run correspond
to completing a full loop connecting the first four sub-steps of the

workflow in Figure 4. Once the experiments are completed, the pro-
totype reports and visualizes the values of the performance metrics
obtained from each experiment with respect to the corresponding
hyperparameter value settings. The user typically completes multi-
ple runs until satisfied by the results, then selects the best models
and reports these as the outcome of the entire model tuning Project.

Prototype Design and Contents. The design of the prototype
visualizes the experiments results depending on the data types and
values of the hyperparameters and performance metrics, thus is
model-agnostic and can be applied to different models (see core
concepts above). However, to demonstrate the prototype with real-
world use cases, we run a real model tuning project and populated
the visualizations with realistic data. Specifically, we built a simple
convolutional neural network (CNN) and applied it to predict the
MNIST dataset of handwritten digits [2]. As a proof of concept,
we streamlined a training set of 60,000 examples and a test set of
10,000 examples.

The prototype can visualize experiment results of different mod-
els, substituting the current views with the data types and values of
the corresponding hyperparameters and metrics. We made a strategic
design decision to use a grid of scatter plot to visualize the training
results with minimum manipulation and leave it to data scientists
to “perform the art” (P4) of interpretation. It is also a practice to
use grids of scatter plots to explore, at an early stage of the analysis,
correlations among sets of variables (see visualization in statistical
tools such as SPSS and SAS).

Use Cases Based on the data obtained from training the CNN
model with 8 experiments, below we describe the prototype imple-
mentation through the following use case with two phases:

Sarah is a data scientist and she is building a 10-way classifier
with the CNN model to recognize the handwritten digit numbers
in the MNIST dataset. She has implemented the model skeleton in
a python script with the hyperparameters as tunable variables, and
needs to decide what values to use.

Phase 1: Sarah sets a list of values for each hyperparameter and
launches a batch of Experiments in the current Run. After
obtaining the training results, she makes sense of these results
and decides how to continue the tuning process.

Phase 2: Sarah stops the tuning progress, cleans up the training
records, and saves her progress as a report.

5.2 Phase 1

Set Value to Launch Experiments. Sarah started by experi-
menting with three hyperparameters: batch size (number of samples
that going to be propagated through the network), dropout rate (the
probability at which randomly selected neurons are ignored during
training), and number of epochs (one epoch is when an entire dataset
is passed forward and backward through the neural network once).
She sets several candidate values for each of the three hyperparame-
ters (Figure 5 left) and sets the remaining hyperparameters as default
values. Notably, by adding an asterisk (*) after the step size she
indicates that the step size increases by multiplying the previous
value by two rather than adding two each time (e.g. 28,56,128 in-
stead of 28,30,32). Then she selects the metrics she wants to use
to measure the model performance (Figure 5 right). In response of
her parameter setting actions, the tool automatically generates the
command to execute the script via a command-line interface, which
she commonly uses to run scripts (see the bottom left field in Figure
5). She can further customize and add more hyperparameters in the
final command, and choose to log more performance metrics (the
bottom right drop-down menu of Figure 5).



Figure 5: Initial Parameter Setting to Launch Experiments

Figure 6: Run dashboard for a batch of experiments in an example interaction flow

Run Dashboard. After the experiments are launched and com-
pleted, Sarah reviews the results of all the experiments summarized
in the run dashboard (Figure 6 A). By viewing the parameter panel
on the left she is reminded of the hyperparameters values she had set
when she launched this run plus the metrics she selected to assess
performance. For each hyperparameter and metric, she can scan the
current value ranges under each slide bar. On the right, she sees
both the table and a set of visualizations. The experiment results are
summarized in the table at the top: it lists experiment ID, status, hy-
perparameters tuned, and performance metrics obtained. Under the
table, she finds two types of visualizations. The first is an aggregated
line chart showing the performance metrics (lines) obtained for each
of the eight experiments (x-axis). She can click on the legend to
choose which performance metric to view. The second is a grid
of 12 scatter plots (three rows, four columns) showing the detailed
results for each metric-hyperparameter combination: each row cor-
responds to one hyperparameter (always shown on the x-axis) and
each column corresponds to one performance metric (always shown
on the y-axis).

Sarah notices that experiment 4 has worse performance than
the others. She suspects that it’s because this experiment had a
low number of epochs. So by brushing over the top right scatter-
plot, she selects the experiments with the smaller number of epochs
(num epochs=6, Figure 6 A.1) to see how these experiments per-
formed (number of epochs corresponds to the first row). Since all
views in this dashboard are coordinated, the brushing operation re-
sults in selecting three experiments across all views, including the
table at the top (Figure 6 B.2). It also results into updated sliders
in the parameter panel on the left: the lower and upper limit of
each range (blue circles) in each slider is automatically re-positioned
to reflect the hyperparameter and performance metrics of the ex-
periments selected by the brushing (Figure 6 B.3). At this point,
Sarah notices that as the experiments selected have num epoch=6
and dropout rate=0.5, the batch size shows a linear relationship with
all the performance metrics (the relationship is highlighted for the
reader with gray lines in Figure 6 B.4). Thus she infers that experi-
ments with higher batch size values might have higher accuracy and

lower loss values. Based on this insight, Sarah now selects the ex-
periments with the largest batch size, batch size=128 (Figure 6 B.5).
Based on this selection she has now identified three experiments
(Figure 6 C), and it seems that dropout rates 0.3 and 0.5 are not as
good as 0.7. Yet, none of the three experiments has good accuracy,
thus she decides to check each experiment in more detail via the
experiment dashboard.

Experiment Dashboard. Sarah clicks on the Epoch Observa-
tory sub-tab and enters the experiment dashboard, where the left
panel and table at the top are persisted from the run dashboard where
she was earlier. Here, in the table, she selects one of the three rows
(experiments) she is investigating. She replays the training process
of the individual experiment (Figure 7 label 1). She repeats this
process with the other two experiments. She is investigating how the
loss and accuracy curves look like in each experiment, and specifi-
cally, each epoch. This will help her find a good trade-off between
good final performance and amount of noise (i.e., metric fluctua-
tions) in the training process. In the experiment dashboard, under
the table, she analyzes the configuration summaries or metadata of
the experiment (label 2), the line charts showing the performance
metrics (lines) within epoch (label 3) and across epochs (label 4). In
each of these line charts, she clicks on the legend to choose which
performance metric to view. On the lower right, she finds a visualiza-
tion that is specific to the current model and dataset. In this case, she
sees a confusion matrix as a heat map. This visualization helps her
assess if she can trust the model trained in the current experiment.
Specifically, she inspects the cells that show what digits are more
frequently misclassified and why by looking at the examples shown,
upon cell hovering, under the matrix. For example, she hovers over
row 2 and column 6 and finds out that there are 14 data points that
are actually digit “2” but classified as digit “6” (see frequency 14
in the matrix, magnified in Figure 7 label 5), and the images at the
bottom are examples of those misclassified data points. This gives
her a sense of the quality of the model predictions.

Support to Decide the Next Batch of Experiments. After ex-
amining the current experiment results in the global and local views



Figure 7: Experiment dashboard for an individual experiment

back and forth, Sarah decided to run another batch of experiments,
where she wants to keep the three tuned hyperparameter values the
same as the best experiment of the current run: num epochs=12,
batch size=128, dropout rate=0.7. She plans to experiment with
a new hyperparameter: number of layers, to see if she can use less
number of layers to achieve as good a performance. She clicks on
“Start new run” on the bottom left and set a new grid of the hyperpa-
rameter values in a modal window with a similar interface to Figure
5. As a result, as this new run is complete, the parameter panel in
the run dashboard (see Figure 6 B.3 shown earlier) will now show
four hyperparameters.

5.3 Phase 2

Project Dashboard. Sarah has tuned the model across five
batches of experiments and wants to save her progress so far as
she feels satisfied by the results. While still in the Run Dashboard
(where she analyzed her last run), she clicks on the “Analytics” tab
(Figure 7 label 6) to analyze her progress across all runs in the Project
Dashboard (Figure 8) and then create a report. In this dashboard, she
first scans the large table on the left with all the experiments she ran
and with values of hyperparameter and performance metrics. Then
she uses the line chart on the right to review how the performance
metrics have improved run after run, historically (Figure 8 upper
right) in relation to the tuning of the hyperparameter values used
(Figure 8 lower right). By brushing over the upper right chart, she
selects all experiments from the first two runs and archives these
in a group as the results were poor. Then she cleanses the set of
experiments from the remaining three runs by interacting with the
table on the left and using the checkboxes in the first column: she
selects and archives the bad ones and stars a few good ones that she
wants to discuss and annotate with her colleagues. Later on, after
meeting her colleagues, she finally includes the best model in the
report which she shares with the domain expert who requested the
tuned model for a handwriting recognition application.

5.4 Prototype Status

The prototype implementation and evaluation are still in progress.
Several components of the prototype, such as features of the project
dashboard shown in Figure 8 (e.g., multi-selection, interactions over
the charts on the right, and report sharing) are still under construction.
The figures (5-8) and use cases in this section are intended to show
how the final prototype will support the hyperparameter tuning
process. Additional refinements to the prototype implementation
are also expected after a final round of evaluation with the same
practitioners.

Figure 8: Project Dashboard

5.5 Preliminary Evaluation

We presented the workflow and the prototype to the same group of
six data science practitioners as during the first phase. We used a
similar method and each session lasted again an hour. During the
session, we used screen sharing to first review the workflow (15
minutes) and then demonstrate each component of the interactive
prototype (45 minutes). We used a semi-structured interview method
with open-ended questions that requested feedback on the workflow
and each prototype component. Each interviewee gave feedback and,
when relevant, specified new requirements evoked by the prototype.
We recorded and transcribed each session. The qualitative findings
extracted by two co-authors from the transcripts are summarized
below.

Overall, all interviewees validated that the workflow represents
their current hyperparameter tuning process and captures the key
sub-steps. The set of visual analytics capabilities supported in the
prototype are useful and required. “I like the feature set, I can
imagine myself using it. The handwritten notes stop making sense
to me after a long time, and hard to understand for other people.
The problem is: you just make up as you go along [reviewing the
notes]. This structure will help formalize that.” (P1). In addition,
the interviewees found the MNIST dataset and the CNN model used
as content for the prototype implementation representative enough
of hyperparameters and metrics used for real-world models. The
prototype triggered further insights, where the interviewees gave
suggestions of how the prototype could be connected or extended to
help with work needed after the models are deployed in production
(e.g., apply the model to new data).

Run Dashboard. The data science practitioners found the grid
of hyperparameter-metric scatter plots and the brushing & linking
among all views particularly helpful as it fulfills a need not yet ad-
dressed by their tools. “Its an inherently hard problem how you
visualize multiple hyperparameters and performance [metrics]. But
giving me the way to slice and dice it definitely helps.” About the
line chart showing the performance metrics by experiment, this chart
was initially designed as bar charts, then replaced by the current
line chart to address scalability concerns by one of the interviewees
who usually operate on hundreds of experiments. However, a sec-
ond interviewee recommended reversing this design decision since
connecting the performance with lines might be misleading: “[The
order of the experiments] does not follow a time series relationship
... there’s no natural order to them, so I would argue this should be a
bar graph, not a time series”. Another recommended refinement of
this chart is to find better solutions for performance metrics that have
different scales and units: “I’m not a big fan of putting accuracy
and loss in the same figure.” The visualization (e.g., axes) should
interactively adjust based on the metrics selected and show multiple
metrics in ways that help to compare a batch of experiments.



Experiment Dashboard. Reviewing the epoch information of
each experiment was a recurring practice among the interviewees.
Moreover, they found the confusion matrix very helpful. This visual-
ization is specific to the model and the data being used, thus it would
be expensive to support across models. Our current prototype design
partially addresses this problem by allowing extensions: for models
that do not have an equivalent visualization, we leave it to the data
science practitioner to plug in their own customized visualizations.
However, the interviewees all suggested that it is still worth the
efforts to pre-build some visualizations. I am willing to write extra
lines of code to process the data so that it can be visualized this
way. (P1). This suggests the need for pre-building commonly used
visualizations as skeletons so that the users can populate with the
training results of different models and/or datasets.

Support to Decide the Next Batch of Experiments. Keep-
ing a panel of hyperparameters and performance metrics on the
left in both run and experiment dashboards allows the user to keep
track of their insights emerged from the analysis of the visualiza-
tions (Figure 6 B.3). All interviewees found the “lock” button in
the parameter panel useful to record a promising range of values
for a hyperparameter. In addition to this basic capability, it might
help to have more advanced ways to capture insights during visual
analysis. We explored with the interviewees the utility of defining
and highlighting patterns in a visualization that may help locate the
hyperparameter space worth exploring. For example, the user may
build rules based on patterns in the form of threshold values for a
metric (e.g., minimum accuracy required) or trend-line slope (e.g.,
positive or negative hyperparameter-metric relationship) over the
hyperparameter-metric scatter plots. However, as the interviewees
pointed out “the challenge is that the patterns are project-specific.”
(all) and thus this type of advanced visual analytics support remains
a challenge.

The evaluation of the parameter setting window (Figure 5) sug-
gested that a linear step size is usually not enough. Other common
cases are logarithmic step sizes or other strategies. Some intervie-
wees suggested that they would also like to manually type in the
values in the argument line. Furthermore, they want to receive more
feedback as they specify the parameters to be able to predict what
would happen if they were to launch the batch of experiments. This
refinement of the current design is motivated in particular by cases
where the training might take days and require a large amount of
computation. I would like to see if I do choose to use the linear
step size, how many experiments and what will the combinations
of hyperparameter values look like for each, just to make sure I
didn’t mess up with my math when setting step sizes. (P1). Another
reason for showing this feedback is to allow the user to decide what
to do with the combinations that have been already run. The in-
terviewees pointed to good reasons why they would run the same
hyperparameter value combination again: e.g. if the script or the
data as changed in the meantime. That being said, the interviewees
also wished they had recommendations on the best combinations to
run: “Automatically display what happened when such combination
was used would be the most useful thing to do.” (P1) “It could be
helpful if the system can automatically recommend the ones with the
highest potential success.” (P4).

Project Dashboard. The interviewees found it very useful to
have a different level of visualizations that aggregates the model
performance over time. These are “really valuable views because it’s
very easy to spin your wheels and make no progress without realizing
it. ”(P1). Some also brought up the need to keep free notes. “Eight
is a small number of experiments, and an interesting hyperparameter
search is probably more than this. Then this starts to be challenging
to find what you thought of yesterday.” (P4). Archiving and flagging
experiments are important, because over time as new data coming in,
they want to flag what run to use in production. Such features help
decide when to push a model to production and when to bring it out

of production. Their common practice is to constantly update the
test set to keep an eye on the model performance with the new data.
There were also requirements on more visualizations, “I would also
want to see the loss over epoch for multiple models[experiments] on
the same graph. (P4)”.

6 DISCUSSION AND FUTURE WORK

6.1 Opportunity of learning from user interaction.
An area of future work and discussion central to this workshop is
about how visual analytics tools can allow data science practitioners
to understand the influence of hyperparameters by capturing patterns
on hyperparameter-metrics visualizations and use these patterns to
make decisions on the next round of hyperparameter tuning. For
instance, there is a known pattern that data science practitioners rely
on to decide if the model is overfitting, which indicates that it’s time
to stop the training. The practice is to monitor both training loss and
validation loss as a model is being trained. At the beginning, both
the training loss and the validation loss values would decrease. Once
the validation loss starts to increase, it means the model starts to
overfit the training set of the data. This is a prevalently used pattern
that can be predefined in visual analytics tools and be automatically
flagged on occurrence in any project.

However, most, if not all, of the other relevant patterns that a data
science practitioners could use are project-specific, such as the slope
of the training loss or the amount of noise (i.e., value fluctuations or
variance) in the learning curve. Often there are no a priori rules, and
instead comparisons afterward. “I don’t know what’s good until I
run what’s bad. It’s kind of important to understand what caused the
noisy curve and how can I remedy noise in the future.” The limited
transferability of these patterns across projects due to external factors
such as performance expectations and resources not specified in
the tool makes it essential to keep human in the loop and learn
about ad-hoc user interaction to provide project-specific support.
This point was stated emphatically by one of the interviewees (P4):

“hyperparameter tuning is a special part of machine learning, ... an
art that doesn’t have many libraries or rules of thumb. There are no
rules to indicate when to apply what. It’s all about trial and errors
but because of that it requires experience to know which trials you
will never even start doing.”

6.2 Modularized workflow and scalability with higher di-
mensions.

Another area of future work and discussion is about alternative
strategies to search the parameter space and how they could be
combined modularly depending on the project needs. The number
of hyperparameters of a machine learning model can range from
none to more than a hundred. Our prototype assumes an iterative
grid search where we picked 3 hyperparameters at a time. This is
because according to the data scientists, they usually progressively
explore the hyperparameter space rather than all at once, and they
would focus on a dozen of most important hyperparameters when
the hyperparameter space is high.

The modularization of the workflow we proposed would allow
plugging in automated search. For example, an automated random
search or more advanced sampling methods like latin hypercubes and
low-discrepancy sequences, can be initiated by sampling the candi-
date values from a user-specified range. Then after the experiments
are completed by this automatic module, the results can be used
to fit in certain statistical models, depending on the optimization
algorithm.

6.3 Limitations and Next Step
Balance model-agnostic and model-specific analysis. One

of the challenges in building visual analytics tools for hyperparame-
ter tuning is the balance generalizability and the specific model as
well as the data. We demonstrate the prototype with an example



project that uses CNN model to classify MNIST dataset [2]. Most of
the visualizations can be customized for training results of different
models by specifying the number and data types of the hyperparame-
ters and performance metrics, which do not make assumptions about
the type of the model. On the other hand, when deciding the hyper-
parameter values in the next batch of experiments, more in-depth,
model-specific analysis is required. It’s worth remarking that the
data science practitioners expressed willingness to write additional
lines of code to extend the visualizations for more model-specific
analysis. For example, the confusion matrix we demonstrated in the
individual experiment dashboard is specific to this 10-class classifier
example. In the case of a k-means algorithm, it needs to be replaced
by an elbow chart by the users.

A special type of hyperparameter: epoch/iterations For
single-stage learners like the above-mentioned k-means, or decision
trees, the special type of hyperparameter “epochs/iterations” in the
CNN use case scenario will not apply anymore. It represents the
progress of a particular training process when training is iterative like
stochastic gradient descent (where an iteration is usually referred to
as an epoch, thus the notion in the prototype). If the user sets the
number of epochs to be 10, the performance actually gets tracked
for 1 to 10. This would be helpful if the user decides to “interrupt an
experiment”, which means stopping before it reaches the max epoch
since it is noticed that things aren’t converging. In some training
runs, there’s never an epoch since there’s so much data you might
never process it all. It’s also common to take random batches rather
than looping through the data set. In that case, users would probably
track performance by the batch number.

More rigorous evaluation via case studies. Future evalua-
tion of HyperTuner will include case studies where the data science
practitioners actually use the tool to make sense of real-world train-
ing results. This will help understand how users capture patterns in
visualizations to make sense of the hyperparameter impact and make
tuning decisions. In this work, we made an assumption that all the
hyperparameter and performance metrics are tracked and available
for visualization. One of the interviewees raised the concern regard-
ing how the interface communicates with the scripts. A possibility
is to eliminate the code for hyperparameter search and launch the
script for running an individual model many times. The person who
writes the scripts does not have to update the code every time when
there is a need to start a new hyperparameters tuning process.

7 CONCLUSION

In this paper, we reported the results of our interviews with data
science practitioners in industry on the empirical user needs for
hyperparameter tuning and presented a workflow to characterized
the process with the key steps. We proposed the corresponding visual
analytics support to each step and demonstrated early-stage designs
via a prototype. Our preliminary evaluation results show that the
prototype satisfies the needs of hyperparameter tuning and triggers
additional requirements from the users. Future work is required to
perfect and extend the design to incorporate more advanced search
strategies, as well as more extensive evaluation sessions. We share
this early-stage work as an example of how visualization can support
hyperparameter tuning and hopefully evoke more discussion and
research in this area.
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