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Crowdsourced sensemaking has shown great potential for enabling scalable analysis of complex data sets,
from planning trips, to designing products, to solving crimes. Yet, most crowd sensemaking approaches still
require expert intervention because of worker errors and bottlenecks that would otherwise harm the output
quality. Mitigating these errors and bottlenecks would significantly reduce the burden on experts, yet little is
known about the types of mistakes crowds make with sensemaking micro-tasks and how they propagate in
the sensemaking loop. In this paper, we conduct a series of studies with 325 crowd workers using a crowd
sensemaking pipeline to solve a fictional terrorist plot, focusing on understanding why errors and bottlenecks
happen and how they propagate. We classify types of crowd errors and show how the amount and quality of
input data influence worker performance. We conclude by suggesting design recommendations for integrated
crowdsourcing systems and speculating how a complementary top-down path of the pipeline could refine
crowd analyses.
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1 INTRODUCTION

Modern technologies such as social media and mobile devices produce a growing wealth of data.
Such data offers an unprecedented opportunity to develop a deeper and more global view of the
world, but also poses the risk of spreading misinformation and exacerbating biases [37]. Failing
to make sense of this data to prevent terrorist attacks or solve crimes could also harm national
security.

Sensemaking offers great potential to understand the meaning and patterns contained within
large quantities of unstructured, noisy source materials. Sensemaking is used in many domains, from
intelligence analysis to investigative journalism. Pirolli and Card modeled the expert sensemaking
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process as an iterative loop with multiple interdependent steps [42]. Managing this complex process
is cognitively demanding and often requires significant person-power [52]. The increasing volume
and complexity of data makes it even more challenging, given a limited number of experts.

One way to address these challenges is to involve novice crowds in the sensemaking process.
Crowdsourced sensemaking has shown great potential for enabling scalable data analysis and achiev-
ing complex goals. For example, crowds can label and create taxonomies of online discussions [10],
or perform bottom-up qualitative content analysis [1]. However, most novice crowd sensemaking
solutions focus on well-defined sub-problems (e.g., schematizing text data [35]), provide crowds
with ideal input data (e.g., raw documents manually broken down by researchers into smaller text
items [10]), or require facilitation by experts [7]. The crowd results are perceived as useful and a
good starting point, but usually require additional work by requesters [55]. Non-decomposable
macrotasks are generally limited to expert crowds [44, 49].

To overcome limitations of requiring experts, we focus on enabling novice crowds to perform the
entire sensemaking process, without expert intervention, via a pipeline of microtasks. However,
unsupervised crowd sensemaking, where crowd analyses are directly handed off to another group
of workers for the next step of analysis, does not always succeed [32, 34]. There are two main
challenges: (1) interconnecting the inputs and outputs in a pipelined series of crowdsourcing
microtasks, and (2) slicing the large data for microtasks and re-aggregating results. These challenges
introduce a level of complexity that is subject to errors and bottlenecks, which could compound
when propagated down the pipeline, potentially causing incorrect results. Understanding these
effects could enable designers to produce more robust crowdsourced sensemaking pipelines.

In this paper, we probe the errors and bottlenecks that occur in a crowdsourced sensemaking
pipeline that connects multiple intermediate crowdsourcing processes to achieve holistic problem-
solving without expert intervention. Previous work [34] has shown that such a pipeline enables
unsupervised crowd collaboration to solve simple and moderate mysteries, but is challenged by
more difficult datasets. Here, we use a similar pipeline to investigate why and how the crowd
collaboration is challenged.

Specifically, we aim to answer the following research questions:

RQ1 What are the errors (type and frequency) workers make in a crowdsourced sensemaking
pipeline, both within each step and across steps?

RQ2 How does the amount of local data context affect the errors within and across steps in a
crowdsourced sensemaking pipeline?

To answer the research questions, we conducted a series of mixed-method studies with 325
crowd workers to solve the difficult fictional terrorist plot in [34]. We first investigated how crowd
performance is influenced when given either crowd-generated input or gold-standard input (RQ1).
We then examined how the amount of local data context influences worker performance and
error propagation (RQ2). We evaluated the crowd performance by comparing their analysis to a
gold-standard analysis adapted from the dataset’s answer sheet. We classified the types of errors
that occurred in each intermediate step, specifically focusing on the source and impact of errors,
and how the amount of local context influence the error propagation in the pipeline.

Our analysis indicates that while errors happen in each step and propagate to later steps,
surprisingly, both false positive and false negative errors were mitigated to some extent in later
steps. In addition, our results suggest that the appropriate amount of local context is different
depending on the data formats and the type of tasks. We offer design implications to improve the
current pipeline and recommend optimal data context slice sizes in each step.

Our main contributions are:
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a study of the errors and bottlenecks that occur in a crowdsourced sensemaking pipeline in
holistic, unsupervised problem solving;

an analysis of crowd performance in each of the sensemaking steps and the handoffs between
them;

an analysis identifying the trade-offs of the amount of local data context in microtasks.

Our primary intention of this work is to further our understanding of the opportunities and
limitations of incorporating crowdsourcing efforts into complex problem-solving in a more scalable
fashion. We aim to demonstrate the impact of sensemaking challenges in the context of a holistic
sensemaking process, especially the asynchronous analysis handoffs among crowds between
connected steps. Rather than artifact creation, we focus on data analysis and sensemaking with
multiple distinct data transformation steps that require reusing previous analysis outputs among a
sequence of workers. Based on the lessons learned, we draw design recommendations for integrated
crowdsourcing systems and speculate how a complementary reverse path of the pipeline could
refine the existing crowd analysis.

2 RELATED WORK

In this section, we first discuss the errors and challenges encountered by experts and small-
group collaboration in traditional sensemaking. We then discuss the shared and unique errors and
challenges for crowds. We review the role of experts in the success of crowdsourcing processes, as
well as the role of crowd performance and influencing factors, and distill types of crowd errors
seen in prior work.

2.1 Challenges in Sensemaking for Experts and Groups

Traditional intelligence analysts faces the ongoing challenges of parsing, marshaling and syn-
thesizing large quantities of evidence. Analysts need to distinguish pertinent information from
noise, deal with incomplete pieces, find potential suspects, to eventually identify the criminal or
suspect [18, 52]. The expert sensemaking process is modeled by Pirolli et al. [42] as an iterative loop
composed of information foraging and sensemaking (synthesizing). Typical errors of individual
expert analysts include wrong or missing information due to inaccurate memory, misinterpreting
evidence due to cognitive fatigue, and biases due to perception constraints [11, 22].

Collaboration in the sensemaking processes can help mitigate many individual errors. Analysts
from different organizations may have access to different documents, and more readers can sift
through larger amounts of data and generate more diverse perspectives to identify alternative
patterns. On the other hand, collaborative sensemaking does not eliminate all possible errors made
by individuals. Below, we detail the challenges for collaborative sensemaking in small groups.

2.1.1 Additional requirements on shared artifacts and common ground. Collaborating on sense-
making tasks requires analysts to externalize their mental models and represent insights in an
understandable way to each other. Research and tool development in collaborative sensemaking
aims to support multiple analysts to explicitly work together. Large displays where analysts can an-
notate, link, and spatially organize documents were proved to establish an efficient visual common
ground that facilitate collaborative sensemaking [6]. Small groups tend to rely on shared interfaces
and visual metaphors (such as node-link graphs) to co-create concept maps [13]. Such shared
artifacts and metaphors are important for a group of analysts to collaborate synchronously on
foraging for information, identifying topics and planning more in-depth analysis [9, 17]. However,
synchronous collaboration can be constrained by expert availability and does not scale well with
a bigger number of analysts. It might also lead to additional errors due to groupthink [24] that
produces irrational or dysfunctional decision-making outcomes.
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2.1.2 Hand-o timing and instrumentasynchronous collaboration, however, faces the key chal-
lenge of handing o intermediate results between analysts. The e cacy of hand-o heavily depends
on timing. If not happening as early transfer or late referralq, the hand-o is rarely successful.

In addition, the instruments of hand-o are important to establish a shared understanding among
analysts. Goyal et al( found that visualization of data links is more e ective as an intermediate
analysis artifact than a notepad of annotations. Schema and visual layout of the informadietv]

is usually designed to best suit the mental models of previous analysts and are hard to understand
without su cient context and a detailed walk-through. To address this challenge, Zhao et% [
developed Knowledge-Transfer Graphs to support hand-o of partial ndings during analysis.
However, this introduces a new risk of sharing a premature focus on wrong suspects and can derail
the overall investigation trajectory.

2.1.3 Teammate inaccuracy blindness and reluctance to share inforiatidimg-o intermediate
analyses can amplify biases and error propagation among analysts. Group biases might be caused
by similar backgrounds of analysts or by individuals misleading the group. Kang et al. coined the
term "teammate inaccuracy blindnes€29 to describe the phenomenon where previous work from

a partner is assumed valid and useful without su cient quality checks. Inaccurate information can

be reused and premature focuses can be built upon by other analysts. On the other hand, analysis
may fear their own analysis is wrong and hesitate to exchange information and insigtifs Goyal

et al. [19 proposed a social translucence interface to balance the visibility and quality of analysis
between distributed collaborative pairs, but it is unclear how well such approaches would scale to

a large number of analysts.

Some of the above-mentioned challenges for experts can be alleviated in a crowdsourcing context.
For example, the crowds can delve into signi cantly larger amounts of information with less fatigue
and more diverse perspectives. It is also easier to require use of a certain artifact to promote sharing
information with novice crowds. However, the novice crowd's lack of expertise and variability on
di erent tasks can cause crowd-speci ¢ challenges and errors.

2.2 Challenges in Crowdsourced Sensemaking

Crowdsourcing has been successfully applied to many complex sensemaking problems. Crowds
can identify unknown individuals from old photos3g, provide reliable annotations on named
entities in multimedia Twitter data 16, and contribute "outside-the-box" thinking for innovative
problem-solving p4]. Below we review the expert intervention to prepare and guide crowd tasks
and the crowd performance in current crowdsourcing solutions.

2.2.1 Expertintervention to prepare and guide the crowd daky.evaluations of crowd systems
provide crowds with ideal input and detailed task speci cations to illustrate best-case scenario
results. In Mobi p5, the crowds were given very detailed background information and bulleted
lists of traveling goals to plan an itinerary. In Cascadd], researchers manually break down
original Quora responses into smaller text items. When providing analysis and explanations on
social data $1], crowds are given nicely visualized and carefully selected charts, with hints and
examples relevant to the tasks. In a hidden pro le tagiq, crowd workers were given well-written

pro les with no typos or errors. During some open-ended crowd processes, expert also need to
provide real-time guidance?, 33 or heavy-duty centralized coordinationdd. While crowds
showed potential to subcontract existing microtaskd, it is unclear how subcontracting can

be applied successfully in more complex problem solving e orts with multiple interdependent
steps. Novice facilitators/] and crowds BZ are shown to be inadequate to adapt a given work ow
and produce unsuccessful results as a consequence. Chaining multiple crowdsourcing processes
without the above-mentioned expert facilitation could cause unexpected errors and problems.
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2.2.2 Crowd performance and requester decididies.the crowds complete micro-tasks, experts
often need to curate the mixed-quality result&]] and solve the remaining problems. The accuracy

in crowd work depends on the task, context, and the baseline condition. Reported accuracy is
often around 60%1] 16 26 and sometimes can be as good as above 90%. For example, crowds can
create a global taxonomy of online question datasets with quality 80-90% of that of exdé€}ts [
Willet et al. [5]] proposed seven strategies to improve crowd performance and achieved 63%
useful responses in the best results. CRICT feports that 73.98% of crowdsourced links in a
sensemaking exercise were rated valid by authors. In some mixed-initiative syst&mg][ no
standalone crowd performance was reported. Many papers focus on indirect quality measures
such as the number of responsed,[or subjective ratings of the tasksi[], rather than comparing
crowd results to a gold standard. Crowds have demonstrated the promising capability of solving
complex problems, but even successful systems cannot completely eliminate errors in the analysis.
It remains unknown how imperfect parts of the analysis may in uence later analysis.

Various requester decisions beyond poor task design also in uence crowd performance. Lack
of work ow transparency [27] can decrease quality and volunteerism, and a higher number of
perceived co-workers can induce social loa ng{. In addition, US-only workers tend to outperform
non-US workers 14, 51], and a quali cation test [L4 can improve task performance. Some studies
recruited expert crowds49d or volunteers from social mediad], who tend to have higher quality
performance than those from paid platforms like Amazon Mechanical Turk (MTurk). In this work,
we chose a low recruiting requirement (acceptance >90% without enforcing US-only crowds) to
investigate errors made by a broad range of crowd workers. Meanwhile, we draw on the ndings
in previous work to eliminate errors caused by poor requester decisions.

2.2.3 Crowd challenges and err@wdsourcing as a paradigm applied to sensemaking prob-
lems is challenged by the tension between the microtask local view and the global goal, optimal
decomposition of the process and the data into hierarchical work ows and task assignments, as
well as management and quality control of a large-scale workforce.

Fragmented and distributed local data can cause irrelevad}, [missing, or incorrect judge-
ments [LJ. Crowd analysis can also be focused on only a fraction of the given information due to
unevenly distributed data. While devoted analysts have access to the entire data set to gain a rich
understanding of global themes, paid crowd workers usually commit only a short period of time,
and thus are only able to work with a small portion of the data. Decomposing the data into local
microtasks makes it di cult for workers to accomplish high-level synthesis tasks, like identifying
emergent global categories in the data. State-of-art solutions include increasing the amount of
local data B5 49, re-representing and condensing the raw dath $Q, or iteratively revisiting the
previous results [10].

Parallel analysis by many workers may lead to multiple interpretations of the same data. To avoid
falling into an in nite loop of "categorizing the categorization”, hybrid systems are introduced to
recognize duplicates and con icts in the analysig]] 29 and reassign the edge cases to crowdp [
to consolidate the analysis.

The mechanisms of MTurk and similar platforms have been criticized for incentivizing low-
quality work, such as random guesselj. Some crowd workers might not pay attention to the
given input [26. Other low-e ort errors include unclear or speculative responses, inattention to
details, or focusing on super cial fact$[l]. Requesters can improve worker engagement with more
formative instruction languaged], peer-evaluation $3 or even mutual reward dependency§.
There are also visual analytics tools that support monitoring worker's task status and managing
the overall work ow [ 2§. Reviewing other people's work can help workers improve their own
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results B1]. On social media platforms, people tend to engage in self-correcting rumors when
encountering information con icts [2].

High-quality results in previous works provide proofs-of-concept of crowd capabilities and
the e cacy of proposed methods. However, little research focuses on understanding good-faith
reasons why workers struggle, make errors, and fail. Our research addresses this gap and frames the
ndings within the broader sensemaking loop to make them relevant to many types of crowdsourced
sensemaking and data analysis systems.

3 EXPERIMENT DESIGN

In this section, we rst describe the experiment setup and rationale, and then outline the methods
and details of the experiment.

3.1 Problem and dataset: solving mysteries

We focus on the problem of solving mysteries as an example sensemaking process in our experiment.
It is also an important real-world task for which crowdsourcing is increasingly uséd B4. It
contains all the tasks and stages in the sensemaking lagpdnd thus, represents a good coverage
of crowd-powered sensemaking processes.

In our study, the mystery is the same as the one that crowds failed to solve using Cron&HJAlf
is adapted from a real-world professional training exercise for intelligence analysts. For publication
purposes, we have changed some of the names and places used in the dataset. The scenario is about
a ctional terrorist attack and the goal is to identify the target location of the attack. The following
known facts are shared as global context among all participating crowd workers:

A C-4 plastic explosive bomb will be detonated at 0900hrs on 30 April 2003, by a group
of terrorists: Harvey Wulfen, Cedric Whappadder, Joed Shearper, Irving Sprunkiddle.
Where is their target location?

The known facts seem to be abundant, yet the mystery is actually di cult to solve. The C-4 explosive
bomb is masked, stored, and transferred among multiple places. Three of the terrorists have aliases
and forged documents to cover their activities. The data set contains many phone calls among
anonymous numbers, voice messages with code words, with the phone number holder information
in separate, distributed documents. Previous woB4,[4§ indicated that the mystery is di cult

for one committed analyst.

The dataset is composed of 15 ctional report documents from intelligence agencies. Ten have
key information relevant to the attack but also contains noise (irrelevant information) within
the documents. The 5 completely irrelevant documents are intentionally misleading, with similar
terrorist activities, timing, and weapons. The lengths of the documents are mostly around 400
words, but there is one with 193 words and one with 1189 words. The longest document contains
about two-thirds noise.

3.2 Instrument: a crowdsourced sensemaking pipeline

To understand the crowd's capability in di erent sensemaking tasks and the error propagation in
interconnected steps, we conducted the experiment using a system similar to CrovaflAvyhich
was adapted from the expert sensemaking loop [42].

The pipeline (Fig.1) guides the crowd workers through ve sensemaking stages from the bottom
up. Step 1. Search and Filtakes all the raw external documents and rates their relevance. The
output is a subset of documents considered as more relevatep 2. Read and Extraakes the
relevant documents and extracts important evidence information. The output is a list of information
pieces structured as simple sentencBtep 3. Schematitakes the information pieces and organizes
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Fig. 1. The crowdsourced sensemaking pipeline. There are 5 steps connected by their inputs and outputs:
Step 1search and filterelevant documents; Step f2ad and extradmportant information pieces; Step 3
schematizenformation pieces into profiles of candidate locations; Step 4 compare candidatéypothesize

on the most likely one; Step presentthe final conclusion as a narrativetory.

them into pro les of supporting evidence for possible solutior&tep 4. Build Casakes the pro les

and rank the likelihood of each. The output is the most likely answgtep 5. Tell Stotgkes the most

likely answer with its pro le and outputs a nal presentation that expounds how the answer ts

into the known facts and solves the mystery. Within each step, the system slices the step input into
small and contextually relevant piecespntext slicesand distributes them among crowd workers

as microtasks. The system automatically generates microtasks and aggregates crowd analyses in
each step sequentially following the pipeline.

In our implementation, we draw on previous works to eliminate errors caused by poor requester
decisions. In the instructions, we explain to crowd workers that they are analyzing the results
of previous workers and their analysis will be used by future crowds, to provide work ow trans-
parency P7. In addition, we followed the task designs in the previous successful deployments of a
similar pipeline [34].

3.3 Participants

We deployed the pipeline on Amazon Mechanical Turk (MTurk) with workers of higher than 90%
approval rate. This is a relatively lower requirement compared to most of the similar crowdsourcing
research. For example, Crowd Synthesibfsed 95% approval rate on MTurk with additional
training, and ash teams used crowds of experts from Upwod]. Our goal is to involve crowd
workers at a larger scale and make our results more generalizable to di erent real-world problem-
solving situations. We estimated the time needed for each microtask based on pilot studies and paid
a xed amount for each Human Intelligence Task (HIT) with the minimum wage of our location
($7.25 per hour).

3.4 Task and procedure

Our experiment aims to investigate the crowd competency in di erent sensemaking tasks, and probe
the source of errors by manipulating the quality of step input (gold-standard or crowd-generated)
and the size of context slices (1, 3, or all items in the step inputs) (Fig. 2).

3.4.1 Context slicing methods and choilcethe uni-item condition, each item (documents, info
pieces, pro les) in the step input is considered a context slice, so the number of context slices
equals to the number of items in the step inputs. In the all-item condition, the entire step input is
considered as one context slice, so the number of context slices is always one.

In t theriple-item condition, the ways the items are distributed among context slices of size 3
is more complicated. Taking Step 1 as an example, there ]§re= 455possible combinations
to distribute the 15 raw input documents into context slices of size 3. As a proof-of-concept, we
implemented a context slicing method that favors item similarity de ned by entity overlap and does
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Fig. 2. Experiment Design: Besides the five di erent steps in the pipeline, we manipulate the quality of step
input (gold-standard or crowd-generated) and the size of context slices (1, 3, or all items in the step inputs).
There are 4 conditions in total.

not allow overlapping items between context slices. This is to guarantee that the information is
evenly distributed among workers and each input item is analyzed exactly once. If some documents
appear in more context slices, they will be analyzed in more microtasks and by more workers. As
found by Willett et al. [p]], this can introduce biases favoring the information in more heavily
analyzed documents.

3.4.2 Pipeline execution walkthrou@me execution of the pipeline results in one batch of mystery-
solving analysis from steps 1 through 5. For each batch, the system starts with the 15 documents
and executes the ve steps sequentially.

Step 1: rate document relevafide step input is always the 15 raw documents in all conditions.
For each context slice, the system assigns 3 crowd workers to rate the relevance from 0 (completely
irrelevant) to 100 (completely relevant) of each document in the slice. Ratings above 50 (neutral)
are considered as positive. Each worker is also required to brie y explain their rating rationales in
a text box. Documents with a majority vote for positive relevance are considered as relevant.

Step 2: extract important info pieces from relevant docurk@ntsach context slice, the system
rst assigns 1 crowd worker to extract all the important info pieces from the documents in the
slice. The crowd was instructed to format info pieces as simple sentences structured as "who, what,
where, when" as much as possible. After that, documents in each context slice and the extracted
info pieces are assigned to a second worker for review. Reviewers are instructed to correct errors
in the existing info pieces, delete any bad or useless ones, and add new ones to include any missing
information.

Step 3: tagging info piec&®r each context slice, the system assigns 3 crowd workers to tag the
possible target locations mentioned (if any) and the related known facts in each info piece. Each
worker is also required to brie y explain their tagging rationales in a text box. For each info piece,
workers will select one or more tags. Tags with a majority vote will be attached to the info piece.
Info pieces that are tagged the same location names are all put together to fdowagion pro lg
and organized by their evidence types.

Step 4: evaluate location pro I€ar each context slice, the system assigns 3 workers to evaluate
the pro les in it. When context slice size is 1, each worker rates the likelihood of the location to be
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the attack target, from 0 (completely unlikely) to 100 (completely likely). Ratings above 50 (neutral)
are considered as positive. Each worker is also required to brie y explain their rating rationales in
a text box. The location with the highest average rating is considered as the most likely. Otherwise,
the workers pick the most likely location in a given context slice and explain the rationale in a text
box. Locations with the majority vote are considered as more likely than the others in each context
slices. The process repeats until only one most likely location is left.

Step 5: write a narrative presentation to summarize the concl8gémb only works on the most
likely answer thus is the same across conditions. For the most likely location, the system rst
assigns 1 crowd worker to write a narrative story that explains why the given location is most
likely the target of the attack. After that, the story and the winner pro le are reviewed by a second
worker. In reality, Step 5 only needs to run once with two workers (one writer and one reviewer),
but for the purposes of this paper, we ran it 4 more times 4= 8 workers) to gather more data
and be comparable to the other conditions (Table 1).

3.5 Data Analysis

The data that informs this analysis includes the microtask responses submitted by the workers; the
step outputs aggregated by the system; the system log of workers previewing, abandoning, and
submitting the tasks; and the login/logout time for each worker.

We rst compared the crowd analysis to the gold-standard analysis. Except step 1, all other steps
with crowd-generated input require a qualitative comparison between the crowd output to the
gold-standard output. Speci cally, for the info pieces extracted in step 2, the crowd might extract
the same information in di erent ways. We coded for two levels of correctnessnajchingthe
gold-standard info piece, and Rpt matching but relevarand useful to solving the mystery. Since
the crowd might partially extract the info pieces, we also count the number of matched and relevant
elements in the crowd results. An element is any one of the "who, what, where, when" items in
the info piece. In step 3, we compare the resulting location pro les to the gold-standard analysis.
We also qualitatively examine the tagging results and explanations by the crowd. In step 4, we
manually rank the crowd-generated locations with the same criteria as used when ranking the
gold-standard locations, then compare with the crowd rankings. In step 5, we examine the number
of retrieved key evidence and qualitatively evaluate the writing by the crowd.

In addition, we open-coded and analyzed the crowd explanations from steps 1, 3, and 4, identifying
common behaviors and speculating on crowd analysis rationales. Two authors rst sampled around
10% of the data and analyzed separately, then compared the coding to agree on a set of codes with
clear de nitions. After that, author A focused on comparing the crowd results to the gold-standard
analysis, while author B focused on coding the explanations provided in steps 1, 3, and 4. The
two authors then reviewed and iterated on the analysis until reaching a consensus. From the task
performance perspective, we categorize the source of error with respect to data quality and task
behavior (Fig. 3). We classify the data correctness by comparing to gold-standard analysis. We
de ne "the right thing" in task behavior by the following four possible levels of analyses:

Accurate: true to the information source (directly copied from the document text)

Focused: relevant to the investigation goal

Interpretive: rephrase what the factmean(not directly copying)

Deductive: synthesize facts and develop hypotheses (including facts from multiple documents
and hypotheses not directly mentioned in any document)
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Fig. 3. Task performance measured by two sources of errors: data quality and task behaviors

Pipeline Components | Uni-item Gl | Uni-item CI | Triple-item CI | All-item CI | Step Total

Step 1. Search and Filter 45 45 15 3 63

Step 2. Read and Extract 20 18 8 2 48

Step 3. Schematize 57 48 15 3 123
Step 4. Build Case 15 24 9 3 51

Step 5. Tell Story 2+8=10 2+8=10 2+8=10 2+8=10 8+32=40
Total 139+8=147| 92+8=100 49+8=57 13+8=21 || 293+32=325

Table 1. Number of workers hired in each step and each condition, and the total number of workers in each
step across conditions. While Step 5 only requires two workers (one writer and one reviewer), for the purposes
of this paper, we ran it 4 more times (& = 8 workers) to gather more data and be comparable to the other
conditions.

3.6 Limitations

Our evaluation studies have several limitations. We focus on one speci ¢ pipeline and software,
one crowdsourcing platform with one recruiting requirement, and one example data set. These
choices might limit our generalizability. However, the pipeline modularizes the mystery solving
process into representative subtasks, and results on local tasks resonate with prior work. Future
research should explore the pipeline application in di erent types of problems and scenarios.

While the pipeline is adapted from the sensemaking loop that is widely used in sensemaking re-
search, including crowdsourced sensemaking, there are alternatives, such as data-frame 6@pry [
that are also prevalent. It is possible that the crowd shows di erent analysis performance with a
di erent underlying theory and framework.

Additionally, our participants are recruited from Amazon Mechanical Turk with a low require-
ment of 90% approval rate. Workers with di erent approval rate or from di erent platforms, such as
expert crowds from Upwork or volunteers from Reddit, could have di erent reactions and behaviors
to the tasks and collaborations.

4 RESULTS

The correct answer for the target location in the mystery is "NYSE" (New York Stock Exchange).
On the one hand, no CI conditions found the exact correct answer. On the other hand, the uni-item
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and triple-item CI conditions found evidentially and geographically close locations, and provided
meaningful analysis provenance that explains why the crowd made certain correct or wrong
decisions. This good performance is consistent with prior evaluations of a similar pipede [n

this section, we focus on reporting the types and sources of the errors crowds make in each step
(RQ1) and how crowd analysis in each step is di erent when given more local context (RQ2).

4.1 RQ1: Error types and propagation

We compare the crowd analysis under the Gl uni-item and CI uni-item condition to investigate
how the quality of input in uences worker analysis performance. Counting the additional data
collection in step 5, this includes 231+16=247 crowd workers in total: 139+8=147 workers for Gl
and 92+8=100 workers for CI (Table 1).

4.1.1 Dierent numbers of crowds were hired in Gl and CI conditRassing on analysis results

by previous crowd workers introduces uncertainty in the hiring process. Since the crowds selected
9 relevant documents in step 1, step 2 in Cl condition only hif&d 2 = 18workers to write and
review info pieces. This resulted in fewer info pieces and thus, fewer workers were hired in Cl step
3. In Cl step 3, the crowd tagged additional irrelevant locations from the irrelevant information.
Therefore, the ClI step 4 hired more workers to evaluate the likelihood of all those locations.

4.1.2 Localerrortypes and exampl&@mnparing the crowd analysis with the gold standard analysis,
we found local errors in each of steps 1 4. Crowd did well in step 5 with gold-standard input, and
the errors in the Cl condition are due to error propagation. We rst categorize the local errors as
follows, then discuss error propagation in the following subsection.

Insu cient context errorsin step 1, two relevant documents refer to terrorists by their aliases
and were left out by the crowd. A di erent document reveals that those names are terrorist aliases.
Insu cient context also led workers to rate irrelevant documents as relevant, because there was
not enough information to prove the document irrelevant, and the information might'la@rth
looking into". In step 2, the information about terrorist aliases were not extracted. In step 3, the
info pieces about terrorist aliases were tagged as not containing any relevant evidence. In step 4,
many related locations are rated as likely target locations. One worker pointed out'ftiatalso
very possible that it [Empire State Vending Services (ESVS)] is somewhere that they're just using
as part of their cover stories but still rated ESVS as a likely target.

Misinterpretation errordn step 1, one relevant document was rated irrelevant by a worker.
The explanation wasreport date and deposit is dated a er the date in questiosut the dates
in the document are actually before the attack date. In step 2, a worker extracted an info piece
"Cedric Whappadder announced he would pick up the carpethat misinterprets the information
in the document; Cedric Whappadder is the carpet store owner, rather than the customer. In
step 3, a worker tagged "Sudan and Afghanistan" as one candidate location in info 'Hieed
Shearper recieved explosive training Sudan and Afghanistainis indicates that the worker did
not understand that 1) Sudan and Afghanistan are two di erent locations and 2) those locations
are where the terrorists received training, not the targets of the attack. In step 4, a worker rated
the New York Stock Exchange (NYSE) as irrelevant because "there is not a lot of mention about
the stock exchange speci cally”. The worker only focused on the frequency of a location being
mentioned, but did not interpret how this location is connected to the known facts of the attack.

Inattention to background knowledgestep 1, one document directly mentioned a terrorist name,
but workers rated it as irrelevant by the majority vote. Two of the workers did not mention anything
about the terrorist name in the explanation. In another example, one irrelevant but misleading
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document about an attempted bombing was rated relevant, but it involves a di erent time from the
known attack time. This indicates that some crowd workers did not pay attention to the known
facts (e.g., terrorist names and the attack time) given in the instructions.

In step 2, the important information about the attack weapon (C-4 explosive) was not extracted.
The workers only wrote about a cigarette being tossed into a waste basket in a carpet shop, but
did not mention that this resulted in a re and led the remen to discover several cartons of C-4
explosives, nor did anyone mention that the carpet shop belongs to one of the terrorists.

In step 3, one crowd worker tagged an info piece, textsf'Cedric Whappadder has C-4 explosives
in the basement of his carpet shop until April 26, 2003" to have candidate location "in the basement
of his carpet shop". This indicates that the worker did not pay attention to the known attack time
(April 30) given in the instructions. The explosives are moved before the attack thus the carpet
shop cannot be the target location.

In step 4, one worker explained th&it was wri en in the page above that bomb a ack will take
place in new jersey april 26 2003 his, too, con icts with the known facts that the attack was to
take place on April 30, 2003. The worker might have mistaken the date for other dates mentioned
in the task.

Failing the task goalsn step 1, a worker rated a relevant document as irrelevant, but pointed
out the relevance of the document in the explanatidAithough the sentences describe how this
a ack may have been funded, there is nothing there that would make one aware of the location of
the a ack.” The worker did not ful Il the task goal to rate documents as relevant if they contain
information about the known facts of the terrorist attack.

In step 2, a worker extracted an info piece that readd,ISTED IN THE CITY NORTH BERGEN
NJ ON APRIL 22,2003This crowd worker put'l LISTED IN THE CITYih the "what" eld. This
indicates that the worker did not follow the instructions to write complete sentences about the
important information to solve the mystery.

In step 3, some workers put terrorist names as a candidate location tag. Some workers selected
all the evidence tags, explainingd, ¢hose the tags above because it was stated in the instructions
that they knew the weapon, the time and date, as well as, the group of terrorists who are expected to
detonate the weapdihe worker did not understand that the task is to nd the info pieces that are
relevant to the known facts.

In step 4, a worker explainedHowever there is no details related to the a ack location or target
of a ack. Itis extremely di icult to extract details."The worker didn't understand the task is to
rate the likelihood of the given location based on the available information in the pro le.

Low e ort errorsIn step 1, one worker putgoode'in the explanation box. In step 2, several
workers directly copied text from the documents to Il in the "who, what, where, when" elds
that do not combine to read as a meaningful sentence. In step 3, some workers put "Available
Material" as a candidate location tag, and put "good" as the explanation. In step 4, some workers
put "Available Material", or "this is clear" as the explanation.

4.1.3 Error propagatioklVe analyze crowd error propagation by tracing the crowd analysis on
previous errors (the left half of Fig. 3) and comparing it to the equivalent in the GI condition. The
errors in earlier steps led to an increasing number of errors due to insu cient context and missing
information (inherited errorg as well as more low e ort and other local errorsgmpounding erroys
On the other hand, some irrelevant information was ltered out in later stepe¢idental cuie
Below, we describe how each step is in uenced by these types of error propagation.

Step 2 was in uenced by inherited errors and compounding ebreesall, step 2 only retrieved
around half of the gold-standard info pieces. The CI condition missed all the information from the
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3 missing relevant documentimberited errorsand included additional irrelevant information from

the 2 extra irrelevant documentg@mpounding erroysHowever, the Cl condition extracted more
matching info pieces than the Gl condition, even though the input has fewer relevant documents. To
further understand this surprising outcome, we analyzed the individual responses of the microtasks
for the 7 relevant documents shared in both conditions. It turns out most errors (i.e., incomplete or
irrelevant sentences) are due to local errofailjng the task goals We speculate that the varied
performance in the same task might be because the workers are overwhelmed or confused by the
task and did not extract more info pieces than the minimum requirement. A follow-up experiment
repeated step 2 for both the GI and CI conditions with the same microtasks but enforcing a
minimum of 2 info pieces. The results con rmed this intuition. The new crowd {= 20+ 18= 39
mostly extracted 2 info pieces, but the overall quality did not improve. Since the design choices are
consistent with the previous successful deployment of a similar pipeline pipel8# we suggest

that extracting and restructuring information (step 2) is the most challenging step of the pipeline
with more challenging dataset and longer documents.

Step 3 was in uenced by all types of error propagafitve. crowd-generated info pieces are less
understandable due to incomplete and poorly structured sentences, typos and grammar errors, and
some are written in all capital letters. As a consequence, some important information was tagged as
not containing relevant evidence and introduced additional false negative erinreited errorks In
addition, misleading information continued to be tagged by evidence types and propagated strongly.
The crowd generated 8 location pro les, of which 3 are from irrelevant documentsr{pounding
errorg. There was also an increased number and percentage of meaningless explan#iiens (

e ort errorg in step 3. Most of them occurred in info pieces about aliases, phone numbers, etc.,
that require more context to tag. We suggest that the previous poor-quality analysis provided
less context and might have confused the workers about the task goals. On the other hand, some
false positive errors from step 1 and 2 was cured by step 3 crowd, because they couldn't nd any
evidence related to the known factagcidental cune

Step 4 was in uenced by all types of error propagafitse. Cl condition crowd rated a fake
apartment address of terrorists in NYC as the most likely target location. The correct answer NYSE
was not in the step 4 input since the step 1 crowd did not rate the corresponding document as
relevant {(nherited false negative erjoThe USAa very low-resolution location that nevertheless
encompasses the correct answer, received almost the same score and ranked second place. Rating
the apartment address as a likely target location, whose pro le contains irrelevant and wrong
information, as well as missing some important relevant information, iscampounding erroiThe
irrelevant pro le, on the other hand, were rated as unlikely to be the target locatiandidental
cure. We further analyzed the explanations in Cl step 4 to understand how the crowd was able to
mitigate the previous errors. We found that the crowd compared the available information to the
known facts, identi ed and excluded non-logical possibilities (e.g., locations not worth attacking),
recognized cover-up activities (e.g., that the carpet to be picked up is actually C-4 explosives),
and brought in their common sense for geographic proximity (e.g., identi ed explosive location in
the carpet store in North Bergen, NJ and suggested the target is nearby).

Step 5was in uenced by all types of error propagati@hile the Gl presentation logically connects
all 6 gold-standard facts (see Appendix A.1), the CI presentation only has 1 matched fact. The
nal CI presentation eliminated the two irrelevant pieces of information from the given location
pro le (accidental cune revealed the connection between Cedric Whappadder with C-4 explosives,
but reused the misinterpreted information (Cedric Whappadder picking up the carpet) from the
wrong location pro le (inherited errors and connected the wrong information with the correct
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