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Crowdsourced sensemaking has shown great potential for enabling scalable analysis of complex data sets,
from planning trips, to designing products, to solving crimes. Yet, most crowd sensemaking approaches still
require expert intervention because of worker errors and bottlenecks that would otherwise harm the output
quality. Mitigating these errors and bottlenecks would significantly reduce the burden on experts, yet little is
known about the types of mistakes crowds make with sensemaking micro-tasks and how they propagate in
the sensemaking loop. In this paper, we conduct a series of studies with 325 crowd workers using a crowd
sensemaking pipeline to solve a fictional terrorist plot, focusing on understanding why errors and bottlenecks
happen and how they propagate. We classify types of crowd errors and show how the amount and quality of
input data influence worker performance. We conclude by suggesting design recommendations for integrated
crowdsourcing systems and speculating how a complementary top-down path of the pipeline could refine
crowd analyses.
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1 INTRODUCTION
Modern technologies such as social media and mobile devices produce a growing wealth of data.
Such data offers an unprecedented opportunity to develop a deeper and more global view of the
world, but also poses the risk of spreading misinformation and exacerbating biases [37]. Failing
to make sense of this data to prevent terrorist attacks or solve crimes could also harm national
security.
Sensemaking offers great potential to understand the meaning and patterns contained within

large quantities of unstructured, noisy source materials. Sensemaking is used in many domains, from
intelligence analysis to investigative journalism. Pirolli and Card modeled the expert sensemaking
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process as an iterative loop with multiple interdependent steps [42]. Managing this complex process
is cognitively demanding and often requires significant person-power [52]. The increasing volume
and complexity of data makes it even more challenging, given a limited number of experts.
One way to address these challenges is to involve novice crowds in the sensemaking process.

Crowdsourced sensemaking has shown great potential for enabling scalable data analysis and achiev-
ing complex goals. For example, crowds can label and create taxonomies of online discussions [10],
or perform bottom-up qualitative content analysis [1]. However, most novice crowd sensemaking
solutions focus on well-defined sub-problems (e.g., schematizing text data [35]), provide crowds
with ideal input data (e.g., raw documents manually broken down by researchers into smaller text
items [10]), or require facilitation by experts [7]. The crowd results are perceived as useful and a
good starting point, but usually require additional work by requesters [55]. Non-decomposable
macrotasks are generally limited to expert crowds [44, 49].

To overcome limitations of requiring experts, we focus on enabling novice crowds to perform the
entire sensemaking process, without expert intervention, via a pipeline of microtasks. However,
unsupervised crowd sensemaking, where crowd analyses are directly handed off to another group
of workers for the next step of analysis, does not always succeed [32, 34]. There are two main
challenges: (1) interconnecting the inputs and outputs in a pipelined series of crowdsourcing
microtasks, and (2) slicing the large data for microtasks and re-aggregating results. These challenges
introduce a level of complexity that is subject to errors and bottlenecks, which could compound
when propagated down the pipeline, potentially causing incorrect results. Understanding these
effects could enable designers to produce more robust crowdsourced sensemaking pipelines.
In this paper, we probe the errors and bottlenecks that occur in a crowdsourced sensemaking

pipeline that connects multiple intermediate crowdsourcing processes to achieve holistic problem-
solving without expert intervention. Previous work [34] has shown that such a pipeline enables
unsupervised crowd collaboration to solve simple and moderate mysteries, but is challenged by
more difficult datasets. Here, we use a similar pipeline to investigate why and how the crowd
collaboration is challenged.

Specifically, we aim to answer the following research questions:

RQ1 What are the errors (type and frequency) workers make in a crowdsourced sensemaking
pipeline, both within each step and across steps?

RQ2 How does the amount of local data context affect the errors within and across steps in a
crowdsourced sensemaking pipeline?

To answer the research questions, we conducted a series of mixed-method studies with 325
crowd workers to solve the difficult fictional terrorist plot in [34]. We first investigated how crowd
performance is influenced when given either crowd-generated input or gold-standard input (RQ1).
We then examined how the amount of local data context influences worker performance and
error propagation (RQ2). We evaluated the crowd performance by comparing their analysis to a
gold-standard analysis adapted from the dataset’s answer sheet. We classified the types of errors
that occurred in each intermediate step, specifically focusing on the source and impact of errors,
and how the amount of local context influence the error propagation in the pipeline.
Our analysis indicates that while errors happen in each step and propagate to later steps,

surprisingly, both false positive and false negative errors were mitigated to some extent in later
steps. In addition, our results suggest that the appropriate amount of local context is different
depending on the data formats and the type of tasks. We offer design implications to improve the
current pipeline and recommend optimal data context slice sizes in each step.

Our main contributions are:
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• a study of the errors and bottlenecks that occur in a crowdsourced sensemaking pipeline in
holistic, unsupervised problem solving;

• an analysis of crowd performance in each of the sensemaking steps and the handoffs between
them;

• an analysis identifying the trade-offs of the amount of local data context in microtasks.
Our primary intention of this work is to further our understanding of the opportunities and

limitations of incorporating crowdsourcing efforts into complex problem-solving in a more scalable
fashion. We aim to demonstrate the impact of sensemaking challenges in the context of a holistic
sensemaking process, especially the asynchronous analysis handoffs among crowds between
connected steps. Rather than artifact creation, we focus on data analysis and sensemaking with
multiple distinct data transformation steps that require reusing previous analysis outputs among a
sequence of workers. Based on the lessons learned, we draw design recommendations for integrated
crowdsourcing systems and speculate how a complementary reverse path of the pipeline could
refine the existing crowd analysis.

2 RELATEDWORK
In this section, we first discuss the errors and challenges encountered by experts and small-
group collaboration in traditional sensemaking. We then discuss the shared and unique errors and
challenges for crowds. We review the role of experts in the success of crowdsourcing processes, as
well as the role of crowd performance and influencing factors, and distill types of crowd errors
seen in prior work.

2.1 Challenges in Sensemaking for Experts and Groups
Traditional intelligence analysts faces the ongoing challenges of parsing, marshaling and syn-
thesizing large quantities of evidence. Analysts need to distinguish pertinent information from
noise, deal with incomplete pieces, find potential suspects, to eventually identify the criminal or
suspect [18, 52]. The expert sensemaking process is modeled by Pirolli et al. [42] as an iterative loop
composed of information foraging and sensemaking (synthesizing). Typical errors of individual
expert analysts include wrong or missing information due to inaccurate memory, misinterpreting
evidence due to cognitive fatigue, and biases due to perception constraints [11, 22].

Collaboration in the sensemaking processes can help mitigate many individual errors. Analysts
from different organizations may have access to different documents, and more readers can sift
through larger amounts of data and generate more diverse perspectives to identify alternative
patterns. On the other hand, collaborative sensemaking does not eliminate all possible errors made
by individuals. Below, we detail the challenges for collaborative sensemaking in small groups.

2.1.1 Additional requirements on shared artifacts and common ground. Collaborating on sense-
making tasks requires analysts to externalize their mental models and represent insights in an
understandable way to each other. Research and tool development in collaborative sensemaking
aims to support multiple analysts to explicitly work together. Large displays where analysts can an-
notate, link, and spatially organize documents were proved to establish an efficient visual common
ground that facilitate collaborative sensemaking [6]. Small groups tend to rely on shared interfaces
and visual metaphors (such as node-link graphs) to co-create concept maps [13]. Such shared
artifacts and metaphors are important for a group of analysts to collaborate synchronously on
foraging for information, identifying topics and planning more in-depth analysis [9, 17]. However,
synchronous collaboration can be constrained by expert availability and does not scale well with
a bigger number of analysts. It might also lead to additional errors due to groupthink [24] that
produces irrational or dysfunctional decision-making outcomes.
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2.1.2 Hand-off timing and instruments. Asynchronous collaboration, however, faces the key chal-
lenge of handing off intermediate results between analysts. The efficacy of hand-off heavily depends
on timing. If not happening as early transfer or late referral [45], the hand-off is rarely successful.
In addition, the instruments of hand-off are important to establish a shared understanding among
analysts. Goyal et al. [20] found that visualization of data links is more effective as an intermediate
analysis artifact than a notepad of annotations. Schema and visual layout of the information [4, 47]
is usually designed to best suit the mental models of previous analysts and are hard to understand
without sufficient context and a detailed walk-through. To address this challenge, Zhao et al. [56]
developed Knowledge-Transfer Graphs to support hand-off of partial findings during analysis.
However, this introduces a new risk of sharing a premature focus on wrong suspects and can derail
the overall investigation trajectory.

2.1.3 Teammate inaccuracy blindness and reluctance to share information. Handing-off intermediate
analyses can amplify biases and error propagation among analysts. Group biases might be caused
by similar backgrounds of analysts or by individuals misleading the group. Kang et al. coined the
term "teammate inaccuracy blindness" [25] to describe the phenomenon where previous work from
a partner is assumed valid and useful without sufficient quality checks. Inaccurate information can
be reused and premature focuses can be built upon by other analysts. On the other hand, analysis
may fear their own analysis is wrong and hesitate to exchange information and insights [22]. Goyal
et al. [19] proposed a social translucence interface to balance the visibility and quality of analysis
between distributed collaborative pairs, but it is unclear how well such approaches would scale to
a large number of analysts.

Some of the above-mentioned challenges for experts can be alleviated in a crowdsourcing context.
For example, the crowds can delve into significantly larger amounts of information with less fatigue
and more diverse perspectives. It is also easier to require use of a certain artifact to promote sharing
information with novice crowds. However, the novice crowd’s lack of expertise and variability on
different tasks can cause crowd-specific challenges and errors.

2.2 Challenges in Crowdsourced Sensemaking
Crowdsourcing has been successfully applied to many complex sensemaking problems. Crowds
can identify unknown individuals from old photos [38], provide reliable annotations on named
entities in multimedia Twitter data [16], and contribute "outside-the-box" thinking for innovative
problem-solving [54]. Below we review the expert intervention to prepare and guide crowd tasks
and the crowd performance in current crowdsourcing solutions.

2.2.1 Expert intervention to prepare and guide the crowd tasks. Many evaluations of crowd systems
provide crowds with ideal input and detailed task specifications to illustrate best-case scenario
results. In Mobi [55], the crowds were given very detailed background information and bulleted
lists of traveling goals to plan an itinerary. In Cascade [10], researchers manually break down
original Quora responses into smaller text items. When providing analysis and explanations on
social data [51], crowds are given nicely visualized and carefully selected charts, with hints and
examples relevant to the tasks. In a hidden profile task [48], crowd workers were given well-written
profiles with no typos or errors. During some open-ended crowd processes, expert also need to
provide real-time guidance [7, 33] or heavy-duty centralized coordination [49]. While crowds
showed potential to subcontract existing microtasks [39], it is unclear how subcontracting can
be applied successfully in more complex problem solving efforts with multiple interdependent
steps. Novice facilitators [7] and crowds [32] are shown to be inadequate to adapt a given workflow
and produce unsuccessful results as a consequence. Chaining multiple crowdsourcing processes
without the above-mentioned expert facilitation could cause unexpected errors and problems.
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2.2.2 Crowd performance and requester decisions. After the crowds complete micro-tasks, experts
often need to curate the mixed-quality results [21] and solve the remaining problems. The accuracy
in crowd work depends on the task, context, and the baseline condition. Reported accuracy is
often around 60% [1, 16, 26] and sometimes can be as good as above 90%. For example, crowds can
create a global taxonomy of online question datasets with quality 80-90% of that of experts [10].
Willet et al. [51] proposed seven strategies to improve crowd performance and achieved 63%
useful responses in the best results. CRICTO [12] reports that 73.98% of crowdsourced links in a
sensemaking exercise were rated valid by authors. In some mixed-initiative systems [8, 14], no
standalone crowd performance was reported. Many papers focus on indirect quality measures
such as the number of responses [5], or subjective ratings of the tasks [40], rather than comparing
crowd results to a gold standard. Crowds have demonstrated the promising capability of solving
complex problems, but even successful systems cannot completely eliminate errors in the analysis.
It remains unknown how imperfect parts of the analysis may influence later analysis.
Various requester decisions beyond poor task design also influence crowd performance. Lack

of workflow transparency [27] can decrease quality and volunteerism, and a higher number of
perceived co-workers can induce social loafing [40]. In addition, US-onlyworkers tend to outperform
non-US workers [14, 51], and a qualification test [14] can improve task performance. Some studies
recruited expert crowds [49] or volunteers from social media [5], who tend to have higher quality
performance than those from paid platforms like Amazon Mechanical Turk (MTurk). In this work,
we chose a low recruiting requirement (acceptance >90% without enforcing US-only crowds) to
investigate errors made by a broad range of crowd workers. Meanwhile, we draw on the findings
in previous work to eliminate errors caused by poor requester decisions.

2.2.3 Crowd challenges and errors. Crowdsourcing as a paradigm applied to sensemaking prob-
lems is challenged by the tension between the microtask local view and the global goal, optimal
decomposition of the process and the data into hierarchical workflows and task assignments, as
well as management and quality control of a large-scale workforce.

Fragmented and distributed local data can cause irrelevant [51], missing, or incorrect judge-
ments [10]. Crowd analysis can also be focused on only a fraction of the given information due to
unevenly distributed data. While devoted analysts have access to the entire data set to gain a rich
understanding of global themes, paid crowd workers usually commit only a short period of time,
and thus are only able to work with a small portion of the data. Decomposing the data into local
microtasks makes it difficult for workers to accomplish high-level synthesis tasks, like identifying
emergent global categories in the data. State-of-art solutions include increasing the amount of
local data [35, 48], re-representing and condensing the raw data [1, 50], or iteratively revisiting the
previous results [10].

Parallel analysis by many workers may lead to multiple interpretations of the same data. To avoid
falling into an infinite loop of "categorizing the categorization", hybrid systems are introduced to
recognize duplicates and conflicts in the analysis [21, 29] and reassign the edge cases to crowds [8]
to consolidate the analysis.
The mechanisms of MTurk and similar platforms have been criticized for incentivizing low-

quality work, such as random guesses [16]. Some crowd workers might not pay attention to the
given input [26]. Other low-effort errors include unclear or speculative responses, inattention to
details, or focusing on superficial facts [51]. Requesters can improve worker engagement with more
formative instruction language [3], peer-evaluation [53] or even mutual reward dependency [23].
There are also visual analytics tools that support monitoring worker’s task status and managing
the overall workflow [28]. Reviewing other people’s work can help workers improve their own
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results [31]. On social media platforms, people tend to engage in self-correcting rumors when
encountering information conflicts [2].
High-quality results in previous works provide proofs-of-concept of crowd capabilities and

the efficacy of proposed methods. However, little research focuses on understanding good-faith
reasons why workers struggle, make errors, and fail. Our research addresses this gap and frames the
findings within the broader sensemaking loop tomake them relevant to many types of crowdsourced
sensemaking and data analysis systems.

3 EXPERIMENT DESIGN
In this section, we first describe the experiment setup and rationale, and then outline the methods
and details of the experiment.

3.1 Problem and dataset: solving mysteries
We focus on the problem of solving mysteries as an example sensemaking process in our experiment.
It is also an important real-world task for which crowdsourcing is increasingly used [12, 34]. It
contains all the tasks and stages in the sensemaking loop [42] and thus, represents a good coverage
of crowd-powered sensemaking processes.

In our study, the mystery is the same as the one that crowds failed to solve using CrowdIA [34]. It
is adapted from a real-world professional training exercise for intelligence analysts. For publication
purposes, we have changed some of the names and places used in the dataset. The scenario is about
a fictional terrorist attack and the goal is to identify the target location of the attack. The following
known facts are shared as global context among all participating crowd workers:

A C-4 plastic explosive bomb will be detonated at 0900hrs on 30 April 2003, by a group
of terrorists: Harvey Wulfen, Cedric Whappadder, Joed Shearper, Irving Sprunkiddle.
Where is their target location?

The known facts seem to be abundant, yet the mystery is actually difficult to solve. The C-4 explosive
bomb is masked, stored, and transferred among multiple places. Three of the terrorists have aliases
and forged documents to cover their activities. The data set contains many phone calls among
anonymous numbers, voice messages with code words, with the phone number holder information
in separate, distributed documents. Previous work [34, 46] indicated that the mystery is difficult
for one committed analyst.
The dataset is composed of 15 fictional report documents from intelligence agencies. Ten have

key information relevant to the attack but also contains noise (irrelevant information) within
the documents. The 5 completely irrelevant documents are intentionally misleading, with similar
terrorist activities, timing, and weapons. The lengths of the documents are mostly around 400
words, but there is one with 193 words and one with 1189 words. The longest document contains
about two-thirds noise.

3.2 Instrument: a crowdsourced sensemaking pipeline
To understand the crowd’s capability in different sensemaking tasks and the error propagation in
interconnected steps, we conducted the experiment using a system similar to CrowdIA [34], which
was adapted from the expert sensemaking loop [42].

The pipeline (Fig.1) guides the crowd workers through five sensemaking stages from the bottom
up. Step 1. Search and Filter takes all the raw external documents and rates their relevance. The
output is a subset of documents considered as more relevant. Step 2. Read and Extract takes the
relevant documents and extracts important evidence information. The output is a list of information
pieces structured as simple sentences. Step 3. Schematize takes the information pieces and organizes
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Fig. 1. The crowdsourced sensemaking pipeline. There are 5 steps connected by their inputs and outputs:
Step 1 search and filter relevant documents; Step 2 read and extract important information pieces; Step 3
schematize information pieces into profiles of candidate locations; Step 4 compare candidates to hypothesize
on the most likely one; Step 5 present the final conclusion as a narrative story.

them into profiles of supporting evidence for possible solutions. Step 4. Build Case takes the profiles
and rank the likelihood of each. The output is the most likely answer. Step 5. Tell Story takes the most
likely answer with its profile and outputs a final presentation that expounds how the answer fits
into the known facts and solves the mystery. Within each step, the system slices the step input into
small and contextually relevant pieces, context slices, and distributes them among crowd workers
as microtasks. The system automatically generates microtasks and aggregates crowd analyses in
each step sequentially following the pipeline.

In our implementation, we draw on previous works to eliminate errors caused by poor requester
decisions. In the instructions, we explain to crowd workers that they are analyzing the results
of previous workers and their analysis will be used by future crowds, to provide workflow trans-
parency [27]. In addition, we followed the task designs in the previous successful deployments of a
similar pipeline [34].

3.3 Participants
We deployed the pipeline on Amazon Mechanical Turk (MTurk) with workers of higher than 90%
approval rate. This is a relatively lower requirement compared to most of the similar crowdsourcing
research. For example, Crowd Synthesis [1] used 95% approval rate on MTurk with additional
training, and flash teams used crowds of experts from Upwork [49]. Our goal is to involve crowd
workers at a larger scale and make our results more generalizable to different real-world problem-
solving situations. We estimated the time needed for each microtask based on pilot studies and paid
a fixed amount for each Human Intelligence Task (HIT) with the minimum wage of our location
($7.25 per hour).

3.4 Task and procedure
Our experiment aims to investigate the crowd competency in different sensemaking tasks, and probe
the source of errors by manipulating the quality of step input (gold-standard or crowd-generated)
and the size of context slices (1, 3, or all items in the step inputs) (Fig. 2).

3.4.1 Context slicing methods and choices. In the uni-item condition, each item (documents, info
pieces, profiles) in the step input is considered a context slice, so the number of context slices
equals to the number of items in the step inputs. In the all-item condition, the entire step input is
considered as one context slice, so the number of context slices is always one.
In t theriple-item condition, the ways the items are distributed among context slices of size 3

is more complicated. Taking Step 1 as an example, there are
(15
3
)
= 455 possible combinations

to distribute the 15 raw input documents into context slices of size 3. As a proof-of-concept, we
implemented a context slicing method that favors item similarity defined by entity overlap and does
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Fig. 2. Experiment Design: Besides the five different steps in the pipeline, we manipulate the quality of step
input (gold-standard or crowd-generated) and the size of context slices (1, 3, or all items in the step inputs).
There are 4 conditions in total.

not allow overlapping items between context slices. This is to guarantee that the information is
evenly distributed among workers and each input item is analyzed exactly once. If some documents
appear in more context slices, they will be analyzed in more microtasks and by more workers. As
found by Willett et al. [51], this can introduce biases favoring the information in more heavily
analyzed documents.

3.4.2 Pipeline execution walkthrough. One execution of the pipeline results in one batch of mystery-
solving analysis from steps 1 through 5. For each batch, the system starts with the 15 documents
and executes the five steps sequentially.

Step 1: rate document relevance. The step input is always the 15 raw documents in all conditions.
For each context slice, the system assigns 3 crowd workers to rate the relevance from 0 (completely
irrelevant) to 100 (completely relevant) of each document in the slice. Ratings above 50 (neutral)
are considered as positive. Each worker is also required to briefly explain their rating rationales in
a text box. Documents with a majority vote for positive relevance are considered as relevant.
Step 2: extract important info pieces from relevant documents. For each context slice, the system

first assigns 1 crowd worker to extract all the important info pieces from the documents in the
slice. The crowd was instructed to format info pieces as simple sentences structured as "who, what,
where, when" as much as possible. After that, documents in each context slice and the extracted
info pieces are assigned to a second worker for review. Reviewers are instructed to correct errors
in the existing info pieces, delete any bad or useless ones, and add new ones to include any missing
information.

Step 3: tagging info pieces. For each context slice, the system assigns 3 crowd workers to tag the
possible target locations mentioned (if any) and the related known facts in each info piece. Each
worker is also required to briefly explain their tagging rationales in a text box. For each info piece,
workers will select one or more tags. Tags with a majority vote will be attached to the info piece.
Info pieces that are tagged the same location names are all put together to form a location profile,
and organized by their evidence types.

Step 4: evaluate location profiles. For each context slice, the system assigns 3 workers to evaluate
the profiles in it. When context slice size is 1, each worker rates the likelihood of the location to be
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the attack target, from 0 (completely unlikely) to 100 (completely likely). Ratings above 50 (neutral)
are considered as positive. Each worker is also required to briefly explain their rating rationales in
a text box. The location with the highest average rating is considered as the most likely. Otherwise,
the workers pick the most likely location in a given context slice and explain the rationale in a text
box. Locations with the majority vote are considered as more likely than the others in each context
slices. The process repeats until only one most likely location is left.

Step 5: write a narrative presentation to summarize the conclusion. Step 5 only works on the most
likely answer thus is the same across conditions. For the most likely location, the system first
assigns 1 crowd worker to write a narrative story that explains why the given location is most
likely the target of the attack. After that, the story and the winner profile are reviewed by a second
worker. In reality, Step 5 only needs to run once with two workers (one writer and one reviewer),
but for the purposes of this paper, we ran it 4 more times (4×2 = 8 workers) to gather more data
and be comparable to the other conditions (Table 1).

3.5 Data Analysis
The data that informs this analysis includes the microtask responses submitted by the workers; the
step outputs aggregated by the system; the system log of workers previewing, abandoning, and
submitting the tasks; and the login/logout time for each worker.

We first compared the crowd analysis to the gold-standard analysis. Except step 1, all other steps
with crowd-generated input require a qualitative comparison between the crowd output to the
gold-standard output. Specifically, for the info pieces extracted in step 2, the crowd might extract
the same information in different ways. We coded for two levels of correctness: 1) matching the
gold-standard info piece, and 2) not matching but relevant and useful to solving the mystery. Since
the crowd might partially extract the info pieces, we also count the number of matched and relevant
elements in the crowd results. An element is any one of the "who, what, where, when" items in
the info piece. In step 3, we compare the resulting location profiles to the gold-standard analysis.
We also qualitatively examine the tagging results and explanations by the crowd. In step 4, we
manually rank the crowd-generated locations with the same criteria as used when ranking the
gold-standard locations, then compare with the crowd rankings. In step 5, we examine the number
of retrieved key evidence and qualitatively evaluate the writing by the crowd.

In addition, we open-coded and analyzed the crowd explanations from steps 1, 3, and 4, identifying
common behaviors and speculating on crowd analysis rationales. Two authors first sampled around
10% of the data and analyzed separately, then compared the coding to agree on a set of codes with
clear definitions. After that, author A focused on comparing the crowd results to the gold-standard
analysis, while author B focused on coding the explanations provided in steps 1, 3, and 4. The
two authors then reviewed and iterated on the analysis until reaching a consensus. From the task
performance perspective, we categorize the source of error with respect to data quality and task
behavior (Fig. 3). We classify the data correctness by comparing to gold-standard analysis. We
define "the right thing" in task behavior by the following four possible levels of analyses:

• Accurate: true to the information source (directly copied from the document text)
• Focused: relevant to the investigation goal
• Interpretive: rephrase what the facts mean (not directly copying)
• Deductive: synthesize facts and develop hypotheses (including facts from multiple documents
and hypotheses not directly mentioned in any document)
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Fig. 3. Task performance measured by two sources of errors: data quality and task behaviors

Pipeline Components Uni-item GI Uni-item CI Triple-item CI All-item CI Step Total

Step 1. Search and Filter 45 45 15 3 63
Step 2. Read and Extract 20 18 8 2 48
Step 3. Schematize 57 48 15 3 123
Step 4. Build Case 15 24 9 3 51
Step 5. Tell Story 2+8=10 2+8=10 2+8=10 2+8=10 8+32=40
Total 139+8=147 92+8=100 49+8=57 13+8=21 293+32=325

Table 1. Number of workers hired in each step and each condition, and the total number of workers in each
step across conditions. While Step 5 only requires two workers (one writer and one reviewer), for the purposes
of this paper, we ran it 4 more times (4×2 = 8 workers) to gather more data and be comparable to the other
conditions.

3.6 Limitations
Our evaluation studies have several limitations. We focus on one specific pipeline and software,
one crowdsourcing platform with one recruiting requirement, and one example data set. These
choices might limit our generalizability. However, the pipeline modularizes the mystery solving
process into representative subtasks, and results on local tasks resonate with prior work. Future
research should explore the pipeline application in different types of problems and scenarios.

While the pipeline is adapted from the sensemaking loop that is widely used in sensemaking re-
search, including crowdsourced sensemaking, there are alternatives, such as data-frame theory [30],
that are also prevalent. It is possible that the crowd shows different analysis performance with a
different underlying theory and framework.
Additionally, our participants are recruited from Amazon Mechanical Turk with a low require-

ment of 90% approval rate. Workers with different approval rate or from different platforms, such as
expert crowds from Upwork or volunteers from Reddit, could have different reactions and behaviors
to the tasks and collaborations.

4 RESULTS
The correct answer for the target location in the mystery is "NYSE" (New York Stock Exchange).
On the one hand, no CI conditions found the exact correct answer. On the other hand, the uni-item
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and triple-item CI conditions found evidentially and geographically close locations, and provided
meaningful analysis provenance that explains why the crowd made certain correct or wrong
decisions. This good performance is consistent with prior evaluations of a similar pipeline [34]. In
this section, we focus on reporting the types and sources of the errors crowds make in each step
(RQ1) and how crowd analysis in each step is different when given more local context (RQ2).

4.1 RQ1: Error types and propagation
We compare the crowd analysis under the GI uni-item and CI uni-item condition to investigate
how the quality of input influences worker analysis performance. Counting the additional data
collection in step 5, this includes 231+16=247 crowd workers in total: 139+8=147 workers for GI
and 92+8=100 workers for CI (Table 1).

4.1.1 Different numbers of crowds were hired in GI and CI conditions. Passing on analysis results
by previous crowd workers introduces uncertainty in the hiring process. Since the crowds selected
9 relevant documents in step 1, step 2 in CI condition only hired 9 × 2 = 18 workers to write and
review info pieces. This resulted in fewer info pieces and thus, fewer workers were hired in CI step
3. In CI step 3, the crowd tagged additional irrelevant locations from the irrelevant information.
Therefore, the CI step 4 hired more workers to evaluate the likelihood of all those locations.

4.1.2 Local error types and examples. Comparing the crowd analysis with the gold standard analysis,
we found local errors in each of steps 1–4. Crowd did well in step 5 with gold-standard input, and
the errors in the CI condition are due to error propagation. We first categorize the local errors as
follows, then discuss error propagation in the following subsection.

Insufficient context errors. In step 1, two relevant documents refer to terrorists by their aliases
and were left out by the crowd. A different document reveals that those names are terrorist aliases.
Insufficient context also led workers to rate irrelevant documents as relevant, because there was
not enough information to prove the document irrelevant, and the information might be "worth
looking into". In step 2, the information about terrorist aliases were not extracted. In step 3, the
info pieces about terrorist aliases were tagged as not containing any relevant evidence. In step 4,
many related locations are rated as likely target locations. One worker pointed out that "it’s also
very possible that it [Empire State Vending Services (ESVS)] is somewhere that they’re just using
as part of their cover stories", but still rated ESVS as a likely target.

Misinterpretation errors. In step 1, one relevant document was rated irrelevant by a worker.
The explanation was "report date and deposit is dated after the date in question" but the dates
in the document are actually before the attack date. In step 2, a worker extracted an info piece
"Cedric Whappadder announced he would pick up the carpet..." that misinterprets the information
in the document; Cedric Whappadder is the carpet store owner, rather than the customer. In
step 3, a worker tagged "Sudan and Afghanistan" as one candidate location in info piece "Joed
Shearper recieved explosive training Sudan and Afghanistan". This indicates that the worker did
not understand that 1) Sudan and Afghanistan are two different locations and 2) those locations
are where the terrorists received training, not the targets of the attack. In step 4, a worker rated
the New York Stock Exchange (NYSE) as irrelevant because "there is not a lot of mention about
the stock exchange specifically". The worker only focused on the frequency of a location being
mentioned, but did not interpret how this location is connected to the known facts of the attack.

Inattention to background knowledge. In step 1, one document directly mentioned a terrorist name,
but workers rated it as irrelevant by the majority vote. Two of the workers did not mention anything
about the terrorist name in the explanation. In another example, one irrelevant but misleading
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document about an attempted bombing was rated relevant, but it involves a different time from the
known attack time. This indicates that some crowd workers did not pay attention to the known
facts (e.g., terrorist names and the attack time) given in the instructions.

In step 2, the important information about the attack weapon (C-4 explosive) was not extracted.
The workers only wrote about a cigarette being tossed into a waste basket in a carpet shop, but
did not mention that this resulted in a fire and led the firemen to discover several cartons of C-4
explosives, nor did anyone mention that the carpet shop belongs to one of the terrorists.

In step 3, one crowd worker tagged an info piece, textsf"Cedric Whappadder has C-4 explosives
in the basement of his carpet shop until April 26, 2003" to have candidate location "in the basement
of his carpet shop". This indicates that the worker did not pay attention to the known attack time
(April 30) given in the instructions. The explosives are moved before the attack thus the carpet
shop cannot be the target location.

In step 4, one worker explained that "it was written in the page above that bomb attack will take
place in new jersey april 26 2003." This, too, conflicts with the known facts that the attack was to
take place on April 30, 2003. The worker might have mistaken the date for other dates mentioned
in the task.

Failing the task goals. In step 1, a worker rated a relevant document as irrelevant, but pointed
out the relevance of the document in the explanation: "Although the sentences describe how this
attack may have been funded, there is nothing there that would make one aware of the location of
the attack." The worker did not fulfill the task goal to rate documents as relevant if they contain
information about the known facts of the terrorist attack.

In step 2, a worker extracted an info piece that reads, "I LISTED IN THE CITY NORTH BERGEN
NJ ON APRIL 22,2003.". This crowd worker put "I LISTED IN THE CITY" in the "what" field. This
indicates that the worker did not follow the instructions to write complete sentences about the
important information to solve the mystery.

In step 3, some workers put terrorist names as a candidate location tag. Some workers selected
all the evidence tags, explaining, "I chose the tags above because it was stated in the instructions
that they knew the weapon, the time and date, as well as, the group of terrorists who are expected to
detonate the weapon." The worker did not understand that the task is to find the info pieces that are
relevant to the known facts.

In step 4, a worker explained, "However there is no details related to the attack location or target
of attack. It is extremely difficult to extract details." The worker didn’t understand the task is to
rate the likelihood of the given location based on the available information in the profile.

Low effort errors. In step 1, one worker put "goode" in the explanation box. In step 2, several
workers directly copied text from the documents to fill in the "who, what, where, when" fields
that do not combine to read as a meaningful sentence. In step 3, some workers put "Available
Material" as a candidate location tag, and put "good" as the explanation. In step 4, some workers
put "Available Material", or "this is clear" as the explanation.

4.1.3 Error propagation. We analyze crowd error propagation by tracing the crowd analysis on
previous errors (the left half of Fig. 3) and comparing it to the equivalent in the GI condition. The
errors in earlier steps led to an increasing number of errors due to insufficient context and missing
information (inherited errors), as well as more low effort and other local errors (compounding errors).
On the other hand, some irrelevant information was filtered out in later steps (accidental cure).
Below, we describe how each step is influenced by these types of error propagation.

Step 2 was influenced by inherited errors and compounding errors. Overall, step 2 only retrieved
around half of the gold-standard info pieces. The CI condition missed all the information from the
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3 missing relevant documents (inherited errors) and included additional irrelevant information from
the 2 extra irrelevant documents (compounding errors). However, the CI condition extracted more
matching info pieces than the GI condition, even though the input has fewer relevant documents. To
further understand this surprising outcome, we analyzed the individual responses of the microtasks
for the 7 relevant documents shared in both conditions. It turns out most errors (i.e., incomplete or
irrelevant sentences) are due to local errors (failing the task goals). We speculate that the varied
performance in the same task might be because the workers are overwhelmed or confused by the
task and did not extract more info pieces than the minimum requirement. A follow-up experiment
repeated step 2 for both the GI and CI conditions with the same microtasks but enforcing a
minimum of 2 info pieces. The results confirmed this intuition. The new crowd (N ′ = 20 + 18 = 38)
mostly extracted 2 info pieces, but the overall quality did not improve. Since the design choices are
consistent with the previous successful deployment of a similar pipeline pipeline [34], we suggest
that extracting and restructuring information (step 2) is the most challenging step of the pipeline
with more challenging dataset and longer documents.

Step 3 was influenced by all types of error propagation. The crowd-generated info pieces are less
understandable due to incomplete and poorly structured sentences, typos and grammar errors, and
some are written in all capital letters. As a consequence, some important information was tagged as
not containing relevant evidence and introduced additional false negative errors (inherited errors). In
addition, misleading information continued to be tagged by evidence types and propagated strongly.
The crowd generated 8 location profiles, of which 3 are from irrelevant documents (compounding
errors). There was also an increased number and percentage of meaningless explanations (low
effort errors) in step 3. Most of them occurred in info pieces about aliases, phone numbers, etc.,
that require more context to tag. We suggest that the previous poor-quality analysis provided
less context and might have confused the workers about the task goals. On the other hand, some
false positive errors from step 1 and 2 was cured by step 3 crowd, because they couldn’t find any
evidence related to the known facts (accidental cure).

Step 4 was influenced by all types of error propagation. The CI condition crowd rated a fake
apartment address of terrorists in NYC as the most likely target location. The correct answer NYSE
was not in the step 4 input since the step 1 crowd did not rate the corresponding document as
relevant (inherited false negative error). The USA, a very low-resolution location that nevertheless
encompasses the correct answer, received almost the same score and ranked second place. Rating
the apartment address as a likely target location, whose profile contains irrelevant and wrong
information, as well as missing some important relevant information, is a compounding error . The
irrelevant profile, on the other hand, were rated as unlikely to be the target location (accidental
cure). We further analyzed the explanations in CI step 4 to understand how the crowd was able to
mitigate the previous errors. We found that the crowd compared the available information to the
known facts, identified and excluded non-logical possibilities (e.g., locations not worth attacking),
recognized cover-up activities (e.g., that the “carpet” to be picked up is actually C-4 explosives),
and brought in their common sense for geographic proximity (e.g., identified explosive location in
the carpet store in North Bergen, NJ and suggested the target is nearby).

Step 5 was influenced by all types of error propagation. While the GI presentation logically connects
all 6 gold-standard facts (see Appendix A.1), the CI presentation only has 1 matched fact. The
final CI presentation eliminated the two irrelevant pieces of information from the given location
profile (accidental cure), revealed the connection between Cedric Whappadder with C-4 explosives,
but reused the misinterpreted information (Cedric Whappadder picking up the carpet) from the
wrong location profile (inherited errors), and connected the wrong information with the correct
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Fig. 4. RQ 1: Errors in GI (gold-standard input) and CI (crowd-generated input) conditions.

Fig. 5. RQ 2: Errors in uni-item, triple-item and all-item conditions.

information (compounding errors)). The additional data collected in step 5 is consistent with this
result. The GI condition presentations are all complete and cohesive. Three of the new CI condition
presentations inherited the wrong information about Cedric Whappadder picking up the carpet,
one of which included more false positive errors from the wrong location profile. The other one
new CI presentation is very short: "all terrorist attack attempt in April month". We consider this as
a local error (low effort).

Overall, while the compounding of the errors in the CI condition is problematic, the GI condition
of Study 1 suggests that if each step can be improved (perhaps through review or refinement
processes), the chaining of the steps in a pipeline can be a successful strategy for crowd sensemaking.

4.2 RQ2: Impact of context
We analyze the crowd analysis in CI uni-item (Fig. 7), triple-item (Fig. 8), and all-item (Fig. 9)
conditions to investigate how the amount of local context influences the worker performance.
Counting the additional data collection in step 5, this includes 154+24=178 crowd workers in total
(Table 1).
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4.2.1 Step 1: increasing context changes frequency of different local errors. The uni-item condition
retrieved 7 (out of 10) relevant documents and 2 (out of 5) irrelevant documents; the triple-item
condition retrieved 9 relevant documents and 1 irrelevant document; the all-item condition retrieved
all 10 relevant documents but also 4 irrelevant documents (Fig. 5).

Increasing context reduces unforced errors due to insufficient context. Both triple-item and all-item
conditions successfully retrieved the one document about NYSE, while the uni-item condition
failed to. Increased local context enabled workers to use information from different documents
and retrieved documents with hidden relevance. The all-item condition saw the most references to
related documents in the explanations.

Increasing context introduces unforced errors due to misleading context. On the other hand, the
relevant documents in each context slice did not help crowds eliminate the irrelevant document.
Rather, more irrelevant documents were rated as relevant. Our analysis of the explanations indicates
that workers also drew connections between entities such as the country names and date time
mentioned in the irrelevant and relevant documents (unforced errors due to misleading context).
For example, one worker put in their explanation that “previous phone call made out from the
Netherlands, and the passports are Dutch in this document.” The call from the Netherlands is related
to the terrorists in the mystery, but the Dutch passport is linked to a different crime.

Increasing context increases frequency of inattention to the background knowledge. In addition,
workers in bigger context slice conditions are generally more likely to rate documents as relevant
since they might contain “potential clues" in their explanations, though we already listed the
relevant terrorists in the instructions (inattention to the background knowledge). This might indicate
that too much context prohibited workers from focusing on important information.

Increasing context increases frequency of low effort local errors. Compared to the 1 low effort
explanation in uni-item (from 1/45 workers), there were 7 low effort explanations in triple-item
(from 4/15 workers) and 30 low effort explanations in all-item (from 2/3 workers).

4.2.2 Step 2: increased context overwhelmed workers. Workers in the uni-item condition extracted
16 info pieces from 9 documents (9 context slices), the triple-item condition extracted 12 info pieces
from the 12 documents (3 context slices); all-item workers extracted 7 info pieces from the 14
documents (1 big context slice). None of the conditions extracted info pieces about NYSE.

Increased local context helped eliminate compounding false positive errors from step 1. The uni-item
condition extracted info pieces from every document retrieved in step 1, thus some false positive
errors propagated in step 2. The triple-item condition eliminated 1 of the 3 irrelevant documents.
The all-item condition eliminated 2 of the 4 irrelevant documents.

Increased local context reduced unforced errors. The triple-item and all-item condition synthesized
information from more than one document, which is not possible in uni-item condition. One
crowd worker from the triple-item condition connected the phone number addresses and the owner
employment information. This reveals the identities involved in the mysterious phone calls reported
in different documents.

Increased local context provoked higher frequency of "failing the task goals" local errors. A higher
workload led to more relevant documents being missed. In the uni-item condition, no relevant
document was completely ignored, even though the information in the documents was not fully
extracted. Yet, in the triple-item condition, 3 relevant documents were completely ignored, and in
all-item condition, 5 relevant documents were completely ignored (failing the task goals). Fewer
gold-standard info pieces and elements were retrieved in triple-item and all-item conditions, despite
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the increased availability of relevant documents. There were fewer relevant (although not gold-
standard) info pieces and elements, as well.

4.2.3 Step 3: increased local context reduced local errors, but also suffered more from propagated
errors. The uni-item condition generated 8 profiles from the 16 info pieces, of which 3 are from
irrelevant documents/info pieces. The triple-item condition generated 7 profiles from the 12 info
pieces, of which 3 were from irrelevant documents/info pieces. The all-item condition generated 4
profiles from the 7 info pieces, of which 2 are from irrelevant documents/info pieces. None of the
conditions created a profile for NYSE.

More context reduced unforced errors but too much can lead to more low effort errors. In uni-item
condition, 3 irrelevant info pieces were eliminated and 8 workers provided 8 low effort explanations.
In triple-item condition, 1 irrelevant info piece was eliminated and 3 workers provided 5 low effort
explanations. In all-item condition, 1 irrelevant info piece was eliminated and 2 workers provided
30 low effort explanations. We conjecture that providing explanations to every single info piece
encourages workers to analyze the info pieces more carefully, but could be too arduous with big
context slices.

The distribution of context could limit accidental cure and encourage inherited errors. With our
design, the context slices do not overlap, so it is hard to bring together the most optimal context
without reusing the same info piece in multiple context slices. Some info pieces from step 2, though
incomplete, could still make sense when put together with other info pieces. However, the KNN
context slicing algorithm might not successfully put them in the same microtask, thus preventing
effective tagging of those info pieces.

4.2.4 Step 4: increased local context enhanced accidental cure with more in-depth analysis. Workers
in the uni-item condition selected "2462 Myrtle Ave. Apt 307, Queens," the apartment address listed
under two terrorist aliases, as the most likely target location. The triple-item condition selected
"new york state" and the all-item condition selected "Springfield VA."

Increased context encouraged relative comparison and mitigated propagated errors. Despite the
sparse information in each profile, the crowd was able to compare the relative likelihood of given
locations with external knowledge and common sense. For example, one worker mentioned in
the explanation that they recognized that “the phone calls from Ramazi are originating from 703
area code — Virginia.” Given insufficient information about each profile, some workers focused
on eliminating unlikely profiles, rather than selecting likely ones. One explained, “As for why I
chose Springfield, it is the only unclear one. Two have no direct relation to the terrorist, and the third
seems to be a home address.” Although the final decision is farther from the correct location (NYSE),
the analysis is more logical and accurate than workers who selected the apartment address of the
terrorists. There were also zero low effort explanations in the triple-item and all-item conditions.
We speculate this is because workers were less sure about their result and felt more obliged to
explain their uncertainty and thought processes.

4.2.5 Step 5: workers had more compounding errors. The winning profiles fed to step 5 in all
conditions consist of almost half irrelevant info pieces. The workers introduced compounding
errors by connecting the relevant info pieces with the irrelevant ones with dates since all documents
are reports collected in mid-April 2003. The uni-item condition presentation contains 1 matched
fact and 1 irrelevant fact. The triple-item condition presentation did not have any matched facts.
There were 3 relevant facts connected to irrelevant information with dates. The presentation
mostly described "evidence led the police to investigate. . . " The all-item condition presentation
has 1 matched facts and 3 relevant facts. The two crowd workers build on top of each other’s
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imagination and created a nice and long story with additional imagined information. Despite the
false positive errors, the resulting prose is actually written in a similar fashion as the two-page
long crime reconstruction given in the data set’s answer sheet.
Crowds can also be distracted by recent news. Most of the presentations in the additional data

collection are consistent with the original results. However, there are 3 presentations directly copied
from recent news articles about the 2019 Sri Lanka Easter bombings. The original data was collected
between February and March in 2019, but the additional data for step 5 was collected in June 2019.
We suggest that the strong social impact of the real-world attack could have distracted crowds
from the analysis of a fictional mystery.

Overall, while crowd performance is negatively affected by too little or too much local context,
the triple-item and all-item conditions of Study 2 suggest that the crowd can reliably synthesize
distributed information and deduce hidden evidence, given the right amount and segmented local
context, which varies based on the data and task design.

5 DISCUSSION AND IMPLICATIONS
In this paper, we empirically investigated crowd errors and trade-offs of additional local context
in different sensemaking stages. We categorized 5 major types of local errors, and inspected how
they manifest in each step with different amounts of the local context. Below we first discuss
how the error propagation in crowdsourced sensemaking resembles and differs from collaborative
sensemaking among experts. We then draw the design recommendations for each sensemaking
stage based on the crowd reaction to propagated errors and different amounts of local context. We
also examine how the experiment setup could have influenced the crowd performance and the
generalizability of our findings.

5.1 Error propagation among crowds: easier hand-off but more inaccuracy blindness.
The pipeline clearly defines the step inputs and outputs, which makes it easier to distribute and
aggregate crowd analysis. More importantly, it enables analyses of one step to be directly handed off
to another. The step inputs and outputs serve as shared artifacts that facilitate crowd collaboration
and eliminate errors due to misunderstanding and miscommunication. This allows us to focus
research efforts on the analytical errors.
To encourage volunteerism and avoid social loafing due to awareness of co-workers [27], we

included workflow transparency in our task instructions. Workers were told that 1) the input they
are given is from previous workers (except step 1 and the GI condition), and 2) their results will be
used by future workers in later analysis. The workers were not told how many co-workers were
working on the same part of the data. Despite the exposure to the pipeline workflow, however, the
crowd still made low-effort errors. In addition, the crowd demonstrates strong team inaccuracy
blindness [25]. Experts are cautious to re-use any given intermediate analysis and usually trace
back to raw material to double check the if they agree with the given input [11]. In contrast, the
majority of the crowd workers take the given analysis as correct, increasing inherited errors from
previous steps.

5.2 Design recommendations for each step.
5.2.1 Searching and filtering tasks need more than one documents to better judge relevance, but
smaller context slice sizes produce higher quality analysis in explanations (step 1). The optimal context
slice size might differ by the investigation goals and the sizes of the data set. If the amount of raw
materials is too big for experts to go through, the crowd can reliably handle 3–15 short documents
(word count 1200–6000), if not more. 3 workers are enough to achieve reasonable accuracy via
majority vote. On the other hand, if the experts aim to use crowds for more diverse perspectives

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. CSCW, Article 136. Publication date: November 2019.



136:18 Li et al.

with smaller data sets, assigning a smaller amount of data (about one document or word count 400)
would encourage more thoughtful analysis that may be worth incorporating in expert analysis. In
addition, when there is more than one document in each microtask, it might be helpful to require
one explanation per microtask rather than per document, to balance the amount of context and the
workload. The disagreement in ratings is also an indicator of crowd uncertainty [41] and reveals the
more difficult part of the data. If the raw materials contain data of multiple formats and granularity,
it might be helpful to have a mixed design with some big slices and some small slices to balance
the workload.

In terms of the task design, our pilot and actual studies demonstrated improved crowd analysis
quality when setting an explicit threshold in a numerical rating task. For example, in our task
design, the crowd was asked to give a rating from 0–100. We annotated the slider with 0 (completely
irrelevant), 100 (completely relevant), with a box showing the selected value by the crowd and
an indication of the value. (If it is above 50, the word "relevant" is shown next to the number,
otherwise, it displays the word "irrelevant.") This helps to normalize the subjective rating preference
of different individuals and supports more reliable result aggregation via majority vote.

5.2.2 Reading and extracting tasks might require further task decomposition and benefits from
small, focused context slices (step 2). The current design of step 2 worked well in simpler data
sets with shorter (word count 50–100) and easier documents [34], but cannot handle even one
document written in report language (word count 400). For more difficult input data or when
the crowd workers are not guaranteed to be native speakers, it is worth the effort to incorporate
related research that focuses specifically on information extraction and hire more workers for each
document. Successful examples include iterative re-representation [1] and the highlighting and
clipping [21].

5.2.3 Schematizing tasks can handle big context slices and benefit from more effective hand-off with
additional information (step 3). Restructuring information in the documents into simpler info pieces
can support larger-scale information synthesis by increasing analytical power and efficiency. When
working with data of more concise formats, microtask performance benefits from bigger context
slices. The crowd handled context slices of size 3 to 15 fairly well in our case studies, but the
explanations became a burden. We expect the crowd can take even more than 15 data points per
microtask, but it is also recommended to reduce the requirement on explanations, perhaps to one
explanation per microtask, rather than per info piece. Similar to step 2, step 3 is yet another complex
component that may benefit from being further modularized into sub-workflows. Schematizing is
a more challenging step that connects the information foraging and synthesizing in the pipeline.
It also challenges the local task with a global view more than other steps, since the organization
of the information is required to make global sense and lead to further hypotheses. Successful
related research could be incorporated in the pipeline to support this need and improve the task
performance, such as using machine learning to pre-process info pieces and extract global patterns,
and then focus crowd intelligence on edge cases [8], or having multiple iterations on crowd tagging
results [10], or more effective sub-workflows and task interfaces [35].

5.2.4 Hypothesizing tasks benefit the most from bigger context slices to judge the relative likelihood
and mitigate propagated errors (step 4). The crowd performance was not negatively affected by an
increased number of profiles. Thus, we would expect the microtasks could handle 3-4 profiles (word
count 1000), if not more. The main bottleneck of step 4 was that the correct answer was not even
one of the available options. Besides improving the design of the previous step, we suggest the
most effective refinement would be from a top-down path of the pipeline, with feedback provided
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based on a more global understanding of the data set and current analysis, to retrieve the missing
information in previous steps and redo step 4.

5.2.5 Story-telling tasks might not benefit from additional context (step 5). In step 5, the crowd was
given only one winner profile in all conditions, by design. However, the amount of information
contained in the profiles ranged from 88 to 335 words. Thus, the crowd is able to handle at least
this amount of information and write a reasonable report. When using the mixed-quality crowd
analysis results as input, step 5 does not recover from errors and can inherit or even compound
previous errors by connecting irrelevant information to the relevant evidence with coincidentally
overlapping entities. In addition, our case study implemented a subtask in step 4 that allows workers
to optionally merge profiles. This ended up providing richer information in step 5 that avoided
losing precious relevant information and helped reveal the propagated errors. Thus, we also suggest
that in similar pipelined crowdsourcing systems, the benefit of including more results from the
previous step outweighs the potential disadvantages of introducing more false positive noise.

5.3 Generalizability and future work
5.3.1 Performance variance due to recruiting requirements and strategies. When the scale of collab-
oration increases, requesters must either spend more time recruiting more workers, or lower the
recruiting requirements. Spending more time is not always possible, especially in time-constrained
scenarios such as intelligence analysis. This paper focuses on the problems caused by lowering the
recruiting requirements. Our experiment results show that this leads to higher variance in crowd
efforts and more low-effort performance. While the variance of crowd efforts is influenced by the
sensemaking tasks and the context slice sizes, it does not differ by the input source.

Using time as a proxy measure of crowd effort, we found there is no significant difference in the
crowd effort with crowd-generated and gold-standard input across all steps: pstep2 = .079;pstep3 =
.98;pstep4 = .65;pstep5 = .26. On the other hand, different sensemaking steps have different
variances, and the variance is also influenced by the context slice size (Fig. 6). When using uni-item
context slices, steps 2, 4, and 5 have higher variance than steps 1 and 3. Step 2 and 5 microtasks
require free-text responses, which invokes more thinking and requires more time for some workers.
Step 4 microtasks might be difficult to rate the likelihood depending on how much information the
given candidate has. When using triple-item context slices, the difference in variance is smaller
across the five steps, but step 5 is still the highest.

When using all-item context slices, step 1 and 3 took many crowd workers much more time and
has a higher variance than other conditions. This might be because the microtasks for the two steps
are more atomic (i.e., rating each document and tagging each information piece). Some workers
might need to take breaks while finishing the microtask when the number of items increases. Step
2 and 5 variance is similar to other conditions, but the time required for all workers in step 2 is
a lot higher than in other conditions, indicating that the microtasks get a lot more challenging
for everyone. Step 4 takes a longer time but has a smaller variance, possibly because with all the
candidates in sight, there is more to read, but picking one most likely candidate becomes easier.

Finally, microtasks for step 5 in all conditions are the same, and there is no statistically significant
difference in the time spent (pstep5 = .31). This result suggests that the crowd performance and
errors can be generalized to a bigger pool of similar crowds.

One possible way to address the high variance and low effort problem is to raise the recruiting
requirements. The extreme case would be expert collaboration [19]. Another strategy suitable
for novice crowd workers would be to increase the number of workers per microtask. Our case
studies used 3 workers for majority-vote tasks and 2 workers for create-review tasks. The results
indicate that increasing the number of workers could help converge on better analysis since poor
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Fig. 6. Time spent on each step when given different amount of local context

performance is a smaller percentage than high-quality analysis. However, increasing the number
of crowd workers might require changing the mechanism to aggregate crowd results. For example,
in steps 2 and 5, an alternative would be hiring more crowd workers for the same context slice and
then hire another group of workers to pick the best results. Future work is needed to investigate
how the error frequency changes with different hiring requirements, and prioritize the design
recommendations to eliminate the most influential errors.

5.3.2 Optimizing the analysis with task design and execution strategies. Besides our design recom-
mendations to improve crowd analysis performance, additional subloops between connecting steps
could also increase the quality of the intermediate step output. Our analysis of the explanations
indicates that the crowd can sometimes recognize poor input and explain what is missing. This
makes it promising to enable crowd-driven reporting of low-quality work (similar to the panic
button proposed by Retelny et al. [43]) and redo the prior analysis. For example, if workers in a
later step complain about the quality of input, they can be switched back to the previous step and
fix the prior analysis. This forms sub-loops between connecting steps before reaching the final
step. Designers might need to put a limit on the number of iterations allowed between steps, to
prevent long, inefficient sub-loops from wasting crowd workers’ effort. Future work is needed to
further quantify the crowd’s ability to identify and self-correct analysis errors. Unlike rumors on
social media [2], the task domain of mystery solving may not require the same amount of incentive
and background knowledge to critique each other’s analyses. Showing high-quality results from
other workers is effective for making workers reconsider their judgments [31], and also brings in
additional local context. However, this approach will make each worker stay for a longer session in
each microtask, and require a mechanism to automatically pick the high-quality results.

5.3.3 Top-down refinement with a global understanding of the data and crowd analysis. Given the
unpredictable and challenging nature of exploratory sensemaking, we see the potential benefit of a
top-down path of the pipeline to complement the bottom-up analysis. There is always a limit to
how much context a local view of the data can synthesize, and even with a completely reasonable
local analysis, the key evidence can be so well hidden that it cannot be revealed without iterative
analysis. By the end of the pipeline execution, the crowd has produced a more detailed global
understanding of the information available, which could help an expert prioritize and focus on the
important evidence. Experts [15] or the crowd [36] could "debug" the pipeline and identify where
mistakes were made during the sensemaking process. The pipeline structure provides built-in
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provenance analysis that traces the information and insights between steps, and makes it easy to
examine the initial crowd analysis, evaluate analysis quality, identify information holes or logic
flaws, trace back to errors in a top-down manner, and guide the refinement of the previous analyses
with feedback. In future work, we plan to continue to explore how the pipeline can also support
debugging and refining previous imperfect analysis. The errors and bottlenecks we classified in
this paper can serve as a checklist to identify errors in previous crowd analysis. More importantly,
the analysis provenance that connects the intermediate results and traces information flow will
be critical for obtaining a big picture of the mystery and applying the newly acquired knowledge
from the previous analysis in the refinement process.

6 CONCLUSION
Crowdsourced sensemaking has demonstrated impressive potential across a range of complex tasks
and domains, but most systems still require expert intervention because of crowd errors. This paper
studies the errors and bottlenecks in a crowdsourced sensemaking pipeline that connects multiple
sub-processes without expert intervention. Our analysis shows how chaining together mixed-
quality crowd analyses can inherit or even compound previous errors. Wrongly retrieved irrelevant
documents or useless information pieces can further pollute later analysis. Surprisingly, both
false positive and false negative errors were mitigated to some extent without external mediation.
We attribute this to the design of the pipeline that condenses information from documents to
info pieces to profiles as the analysis progresses to high-level goals. In addition, our results also
demonstrated that increasing the amount of local context can facilitate synthesizing information
from distributed sources, but introduce additional workload that can overwhelm workers and
harm the overall analysis. We also proposed design recommendations for supporting complex
crowdsourced sensemaking, both within individual steps and across the broader pipeline.
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A APPENDICES
A.1 Gold standard analysis and decision rationales
We describe the final gold standard output for each step and the decision rationales in the generating
process.

10 relevant documents. We trace the source documents of each piece of key evidence used in the
Wigmore chart and mark them as the gold-standard relevant documents.

19 most important info pieces. The answer sheet listed 20 key evidence parsed from the doc-
uments that contribute to solving the mystery. The key evidence includes both direct evidence
and supporting clues, some are inferences that cannot be directly generated from one document
only. In order to develop a baseline performance, we focus on only the direct evidence and assume
the condition where each microtask only has access to one document. We break down the direct
evidence used in the Wigmore chart into simpler sentences that 1) can be generated from one single
document, 2) are structured as "who, what, where, when" as much as possible. This is to match the
baseline condition of the step 2 microtasks where each worker only has access to one document.
The resulting 19 info pieces are gold-standard info pieces.

5 location profiles. The answer sheet organizes the key evidence vertically by deductive reasoning,
but not horizontally into profile schemata. We manually tag the single-document gold standard
info pieces by whether they contain information about any known "Terrorist", the C-4 explosive
"Weapon", and the planned attack "Time". Some information pieces need to be put together with
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others to reveal meaningful evidence; we mark these as hidden tags. For possible target locations,
we extract all the locations mentioned in the information pieces. It’s worth noting that the names
and resolutions of the locations are tricky. For example, the correct answer "NYSE (New York
Stock Exchange)" is also in New York City. Since both "NYC" and "New York City" appeared in
the documents by themselves, we extracted New York City [NYC] as one of the possible target
locations. Putting the info pieces about each location together is the gold-standard location profiles.

Likelihood ranking of profiles. The answer sheet also doesn’t rank the likelihood of all locations
mentioned in the dataset. We rank the locations by 1) their geographical distance to the real target
location (NYSE), 2) the number of terrorist activities, and 3) the minimum depth of its mention
in the Wigmore chart. We rank NYC, the lower resolution location containing the correct answer
NYSE, both as the first place. The final ranking of likelihood is New York Stock Exchange [NYSE] =
New York City [NYC] > Empire State Vending Services [ESVS] > carpet store in North Bergen, NJ >
Springfield, VA.

Final presentation. The answer sheet contains a conclusion statement and almost two pages of an
article detailing the process of terrorist coordinating the attack. The article connects the facts and
develops hypotheses but also involves domain knowledge and speculative details (not mentioned
nor derived from the given documents, e.g. "Several days before the delivery of the vending machine
containing the bomb, Alwan goes to the NYSE to fill a coffee, tea, hot chocolate machine and, in
the process, disrupts its functioning.") Thus, we define the gold-standard final presentation not as a
pragraph but regulates the most important facts to mention, namely:

• Joed Shearper is 1) a terrorist 2) with explosive training and 3) has access (to the vending
machines in) the New York Stock Exchange under 4) the alias Devon Citopper.

• Cedric Whappadder 5) stores buckets of C-4 explosives in his (cover-up) carpet shop (in
North Bergen, New Jersey).

• Joed Shearper (alias Devon Citopper) and Irving Sprunkiddle (alias Virgil Sneworf) are both
terrorists. They live in the same apartment. One of them 6) picked up C-4 explosives from
Cedric Whappadder’s carpet shop.

Crowd generated presentation with gold-standard input. With the gold-standard profile, the crowd
workers were able to reconstruct the crime from the given profile into a cohesive narrative. Below
is the final presentation by the crowd, with all 6 matched facts from our gold-standard analysis
boldfaced:

The New York Stock Exchange (NYSE) may be under imminent threat of attack by
several known terror suspects. One suspect, a Saudi explosives expert from named
Joed Shearper (aka "Devon Citopper"), possesses a NYSE vendor’s ID through his
employment as a vending machine operator, providing the group both clearance
and expertise for planning and conducting an attack. Alwan lives at the same address
(2462 Myrtle Ave, Apt 307, Queens) and works at the same vending machine company
as a known Pakistani Taliban member, Irving Sprunkiddle (aka "Virgil Sneworf"). A
third suspect, Cedric Whappadder, as recently as April 26, 2003, had access to C-4
explosives that could be employed in a terror incident. Hallak manages a carpet store
in North Bergen, NJ; after several previous calls, on April 22 a caller from a number
associated with Alwan and Albakri’s Queen’s address (718-352-8479) stated that he
would pick up a previously ordered carpet from the store’s location. Hallak has
since vanished. Thus, this terror cell has the capability to attack the NYSE as believed.
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Fig. 7. Error Propagation in Uni-item Condition: the pink colored items are irrelevant documents, info pieces,
and location profiles; the green colored ones are relevant to solving the mystery.

Fig. 8. Error propagation in triple-item condition

Fig. 9. Error propagation in all-item condition

A.2 Error propagation shown in diagrams
We present examples of error propagation in each step under the uni-item (Fig. 7), triple-item (Fig.
8), and all-item (Fig. 9).
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