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Abstract 
Geolocation, the process of identifying the precise location 
in the world where a photo or video was taken, is central to 
many types of investigative work, from debunking fake 
news posted on social media to locating terrorist training 
camps. Professional geolocation is often a manual, time-
consuming process that involves searching large areas of 
satellite imagery for potential matches. In this paper, we ex-
plore how crowdsourcing can be used to support expert im-
age geolocation. We adapt an expert diagramming technique 
to overcome spatial reasoning limitations of novice crowds, 
allowing them to support an expert’s search. In two experi-
ments (n=1080), we found that diagrams work significantly 
better than ground-level photos and allow crowds to reduce 
a search area by half before any expert intervention. We al-
so discuss hybrid approaches to complex image analysis 
combining crowds, experts, and computer vision. 

 Introduction   
In an information society awash with misinformation, sep-
arating truth from fiction is more important than ever. One 
of the foundations of modern investigations across many 
fields, including journalism, law enforcement, and human 
rights activism, is the verification of social media, especial-
ly photos and videos (Barot 2014). Governments post pho-
tos of political events, terrorist organizations share propa-
ganda, and everyday people use smartphones to document 
crimes, natural disasters, and other important events.  
 This visual media increasingly forms the core of news 
coverage and our understanding of the world, yet it often 
cannot be trusted. Photos and videos can be edited or 
shared with misleading contextual information, intentional-
ly or by accident. Image verification is the challenging 
process of analyzing photos or videos posted by others and 
determining 1) if they are what they claim to be, or if not, 
2) what they actually depict. 
 One of the key subtasks of image verification is geolo-
cation, which involves mapping the precise location in the 
world where a photo or video was made. Geolocation al-
lows the investigator to determine where the image was 
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actually made, and compare that with contextual claims 
about its meaning and purpose. 
 Expert geolocators draw on many skills and resources to 
make these determinations (Higgins 2014, 2015; Kohler 
and Luther 2017). The process is often manual, and some-
times tedious. Experts inspect the image for clues, such as 
familiar landmarks, weather, architecture, and landscapes. 
Text and graphics, such as logos, road signs, business 
names, and phone numbers, can be researched online to 
narrow down possibilities. When these clues aren’t defini-
tive, expert geolocators often turn to diagramming and 
satellite image analysis. They first draw an aerial diagram 
of the ground-level image under investigation, a spatial 
reasoning skill requiring substantial practice. Then, they 
use commercial GIS services like Google Maps and Ter-
raServer to systematically search the area for distinctive 
buildings, roads, or other structures matching their dia-
gram. Depending on the size and density of the search area, 
this process can require hours or days even for experts, and 
may still prove fruitless. If the image can’t be geolocated, 
it may not be verifiable. 
 In this paper, we explore how crowdsourcing can sup-
port this geolocation process, with the goal of helping an 
expert locate an image faster and more accurately. Crowds 
have proven to be effective at analyzing satellite imagery, 
but novice crowds lack an expert’s spatial reasoning skill 
in recognizing ground-level features from aerial imagery. 
We close the gap by leveraging the diagramming technique 
from expert practice and adapting it for novice crowds to 
improve their satellite image analysis. 
 In two experiments (n=1080), we present a technique 
that uses crowdsourcing to reduce a geolocation search 
area by half while finding the target area 98.3% of the 
time. We found that giving crowds a ground-level photo 
results in unacceptably poor performance, but a medium-
detail aerial diagram significantly improves their perfor-
mance to near-perfect levels. We also present a prioritiza-
tion technique that uses multi-worker crowd agreement to 
direct experts to the most promising search areas. We dis-
cuss the real-world applications and next steps for this 
work, including new opportunities to leverage the com-
plementary strengths of crowds, experts, and computer 
vision, for complex image analysis tasks like geolocation. 



Related Work 

Computer Vision Approaches to Geolocation  
Image geolocation is a longstanding problem of interest for 
computer vision researchers. One set of approaches uses 
scene recognition to classify images into categories such as 
“gas station,” “playground,” or “beach” (e.g., Xiao et al. 
2010), but these approaches typically do not aim to provide 
precise geolocations. IM2GPS (Hays and Efros 2008) 
sought to bridge the gap between scene recognition and 
geographic information by comparing features in a ground 
photo to a reference dataset of 6.4 million geolocated 
Flickr images and outputting a distribution of the most 
probable regions of the earth. They were able to localize at 
the country level 25% of the 237 photos in their test set, 
and the median error was less than 500 km. 
 More recently, PlaNet (Weyand, Kostrikov, and Philbin 
2016) trained a convolutional neural network on 126 mil-
lion geotagged photos from the web. The system takes a 
photo as input and generates a probability for 26,000 cells 
in a grid covering the earth. The authors evaluated their 
approach by comparing PlaNet to 10 expert players of Ge-
oguessr, a geolocation game. PlaNet won 28 of the 50 
rounds, but neither PlaNet nor experts were able to localize 
beyond the city or street level, and median error was 1100–
2300 km. Computer vision approaches like IM2GPS and 
PlaNet cannot yet consistently achieve the point-level 
specificity typically required for verification work, but may 
provide excellent starting points for expert geolocators. 
 Other work in computer vision seeks to bridge the gap 
between satellite and ground level imagery. Ghouaiel and 
Lefèvre (2016) developed a technique to automatically 
translate ground photos into aerial perspectives, but the 
approach requires panoramic photos and overall translation 
accuracy was 54%. Zhai et al. (2016) trained a neural net-
work to generate ground-level panoramas from satellite 
imagery. Their approach shows promise, but had limited 
effectiveness in handling high variability features like 
buildings. Unlike these approaches, we bootstrap an expert 
diagramming technique to translate between ground and 
satellite images. 
 Combining elements from the above categories, Where-
CNN (Lin et al. 2015) used cross-view pairs of ground-
level and 45º aerial imagery to train a neural network to 
localize ground-level photos. Their approach narrowed the 
location estimate to 1% of the search area for 7–22% of 
query images (depending on the city). While 45º imagery 
is not yet available in many areas, these automated results 
provide a point of comparison to our crowdsourced results. 

Crowdsourcing Image Analysis  
Crowds have been used to perform a variety of standalone 
or human-in-the-loop visual recognition tasks, due to the 

impressive capabilities of the human vision system (Parikh 
and Zitnick 2011). Applications include everything from 
document transcription (Little et al. 2010), to identifying 
meal components for calorie counting (Noronha et al. 
2011), to general-purpose photo analysis requested by us-
ers with visual  impairments (Bigham et al. 2010).  
 Many of these applications rely on crowds to identify 
everyday objects, scenes, or locations that don’t require 
specialized knowledge. However, tools like scaffolding 
and computer vision have been used to help novice crowds 
analyze less familiar content, like graphic designs 
(Greenberg, Easterday, and Gerber 2015) or accessibility 
issues (Hara, Le, and Froehlich 2013). A rich source of 
examples comes from citizen science, where novice 
crowds are trained to recognize and categorize diverse nat-
ural phenomena, such as animals, plants, microorganisms, 
and even galaxies (Lintott et al. 2008; Wiggins and 
Crowston 2014).  
 Crowds have often been used for satellite image analy-
sis, especially humanitarian efforts like locating missing 
persons or assessing damage from natural disasters (Meier 
2015). Much of the literature in this area comes from the 
fields of photo interpretation and remote sensing. These 
researchers emphasize the importance of expertise and the 
challenges novices face in performing these tasks. For ex-
ample, Zacks et al. (2000) found that “novices often cannot 
translate their own observations of the real world into more 
abstract representations of the larger-scale picture.” To 
address these challenges, researchers recommend partner-
ships between experts and novices (Bianchetti and 
MacEachren 2015; Kerle and Hoffman 2013; Hoffman and 
Markman 2001), an idea we explore in this paper. 

Expert Image Geolocation and Diagramming  
Many types of professionals perform image geolocation, 
including journalists, intelligence analysts, human rights 
activists, and private investigators. Of these, the practice of 
journalists, who often view geolocation as a subset of veri-
fication and fact-checking activities, is perhaps best under-
stood. Brandtzaeg et al. (2016) interviewed social media 
journalists to understand their verification practices includ-
ing tools, processes, and limitations. While they do address 
location verification, they do not describe geolocation 
practices in detail.  
 Kohler and Luther (2017) conducted an interview study 
with geolocation experts focusing on their motivations, 
process, and use of collaboration and crowdsourcing. The 
experts’ process involves examining the context of the im-
age, extracting any visual clues that can be researched 
online, and finally using satellite imagery to find a precise 
location. They emphasize the importance of drawing dia-
grams as a tool for converting a ground-level photo into a 
more effective abstraction. One expert, describing a video 



geolocation, said he would “draw a bird’s eye perspective, 
or a satellite image perspective, of how I think it may look 
like from the air. So I can then compare it with satellite 
imagery just to get a better impression.” Another expert 
emphasized the difficulty of this mental translation: “Per-
spective distortion can throw off a novice or a beginner 
really easily because things that you see from the air tend 
not to look how you would think they would from the 
ground.” These observations align with psychological re-
search showing that people with high spatial ability use 
different cognitive strategies for mental rotation tasks (Just 
and Carpenter 1985). Building on these findings, this paper 
explores how diagramming can provide a common ground 
for novice crowds to support experts in image geolocation. 
 Journalists have also produced their own documentation 
of geolocation processes. The Verification Handbook 
(Barot 2014), an edited collection by practicing journalists, 
features chapters on image and video verification. Belling-
cat, the online community for citizen investigative journal-
ists, has published multiple guides to geolocating images 
and videos (Higgins 2014, 2015). Their emphasis on dia-
gramming, crowdsourcing, and leveraging satellite image-
ry aligns well with the goals of this research. 
 In the following two studies, we consider how this dia-
gramming technique can be adapted for crowds who lack 
an expert geolocator’s spatial thinking skills. We first ex-
plore how to create the diagram and what level of detail is 
most effective in Study 1. We then compare the diagram-
ming technique to ground-level photos in Study 2. 

Study 1: Diagram Detail 

Research Questions  
For Study 1, we asked the following research questions: 
• RQ1a: How does diagram level of detail affect quality 

in crowdsourced image geolocation? We hypothesize 
that low detail diagrams will provide too much abstrac-
tion to differentiate the correct subregion from others, 
resulting in higher false positives and lower true posi-
tives than medium or high detail diagrams.  

• RQ1b: How does diagram level of detail affect prioriti-
zation in crowdsourced image geolocation? We hy-
pothesize that higher detail diagrams will lead to higher 
agreement, because there is less ambiguity and therefore 
better chances of participants reaching similar conclu-
sions. This will result in better prioritization. 

System Design  
We built a web-based system using a Django/Python 
framework, a PostgreSQL database, and the Google Maps 
API for satellite imagery and GIS functions. 
 The main component of the system is the crowd inter-
face (Fig. 1). The left side of the interface showed a dia-

gram (in low, medium, or high detail, depending on condi-
tion). The diagram was randomly rotated, and the user 
could rotate it clockwise or counterclockwise by clicking 
arrow buttons underneath it. It also showed a small Google 
Map in Map mode of the region with the 16-subregion grid 
overlaid in black lines. 

Figure 1. The crowd interface. 

 The right side of the interface showed a Google Map in 
satellite mode of the region, divided by a translucent grid 
of white lines into a 4×4 grid of 16 equal-sized subregions. 
The user could zoom in and out, and toggle Map/Satellite 
mode, but was confined to that subregion. The user clicked 
a green Yes / Maybe button if it looked like a potential 
match, or a red No button if it did not, and then clicked 
Next. This advanced the participant to the next subregion, 
and marked in either red or green the corresponding subre-
gion in the small map. The system advanced through the 
subregions in a Creeping Line search pattern, following 
best practices used in search and rescue (Wollan 2004). 
 The decision to have workers evaluate more than one 
subregion per micro-task may seem surprising. However, 
we found in pilot studies that workers who saw only one 
subregion tended to perform poorly due to lack of context. 
The problem was exacerbated when distinctive features 
were cropped or located in corners. After experimenting 
with different-sized regions, we ultimately settled on a 4×4 
grid as striking an effective balance of context and effort. 
 The top of the interface showed remaining task time and 
a button to launch the tutorial. The bottom provided a text-
box for participants to provide feedback on the task, and a 
Finish button. 

Locations  
We used three locations for Studies 1 and 2. BSB showed a 
crowded area near the Monumental Axis in Brasília, Bra-
zil. CLT was a highway near an overpass in Charlotte, NC, 
USA. LAX showed an intersection with crosswalks in 
downtown Los Angeles, CA, USA. We selected these loca-



tions and corresponding ground photos from a set of geo-
location training materials prepared by an expert. Our se-
lection criteria included similarly moderate difficulty and 
geographic and visual diversity. 

Diagrams  
Levels of Detail 
To address Study 1’s research questions, we needed a set 
of diagrams that represented the same location at varying 
levels of detail. However, generating such reference mate-
rials posed challenges because of the many variables. We 
examined examples of diagrams produced by geolocation 
experts. While we identified some common elements, we 
also noticed each expert had his or her own idiosyncrasies. 
It was difficult to compare diagrams for different locations, 
and experts didn’t create diagrams at multiple levels of 
detail. For these reasons, we concluded that using existing 
diagrams for a controlled experiment was not feasible. 
 Instead, we decided to develop a set of levels of detail 
for generating aerial diagrams, based on expert best prac-
tices and other relevant standards. They are specific 
enough to minimize idiosyncrasies for experts, and can 
serve as guidelines to help non-experts get started. These 
features allowed us to compare crowd performance across 
locations and levels of detail in an experimental setting. 
We list the levels of detail below, followed by justification. 
 
• Level 1 (lowest): Streets, roadways, pathways 
• Level 2: Building outlines + above 
• Level 3: Road markings + above 
• Level 4: Building details + above 
• Level 5: Other street-level details (e.g., parking) + above 
• Level 6: Vegetation + above 
 
 Beyond the expert diagrams we inspected, prior work in 
geospatial abstraction provided inspiration. Most literature 
in this area recommends abstractions of city models that 
include both a linear pathway layer and a polygonal build-
ings layer (Painho, Santos, and Pundt 2010). We chose 
pathways (streets, roads, etc.) as our starting level of detail, 
following the lead of GIS platforms like Google Maps that 
use a base layer of geographic data that primarily include 
boundary and road information.  
 Standard specifications of road details are documented 
in the Geographic Information Framework Data Content 
Standard (US Federal Geographic Data Committee 2008). 
In this standard, RoadAttributeEvents, consisting of road 
segments or paths, provide the foundation for higher levels 
of detail such as guardrails, signage, and pedestrian cross-
ings. Therefore, we depict only road paths and shapes at 
lower levels of detail, and add road attributes at higher 
levels of detail. 

 Buildings in urban landscapes can be represented at var-
ying levels of detail, from simple shapes to complex mod-
els. CityGML (Kolbe, Gröger, and Plümer 2005) provides 
an open data standard for building level of detail (LOD) 
with five levels, starting with 2.5D building footprints 
(LOD 0) and ending with detailed 3D architecture models 
with interior features (LOD 4). We adapt this specification 
for our 2D diagrams by showing only building outlines at 
lower levels of detail, and adding building features at high-
er detail levels. 
 The CityGML spec also recommends that vegetation 
(e.g., trees, landscaping) should only appear at the highest 
level of detail. Correspondingly, our guidelines limit vege-
tation to the highest detail level. 
Rendering the Diagrams 
For Study 1, we decided to experiment with low, medium, 
and high-detail diagrams (Fig. 2), corresponding to levels 
1, 3, and 6 in our set. The levels are cumulative, so details 
were conflated in some diagrams but never omitted. A 
member of the research team referred to satellite imagery 
and our level of detail guidelines to create all the diagrams 
in Adobe Photoshop. We also cropped each diagram into a 
circle to avoid imposing an orientation on participants.  

 

Figure 2. Low, medium, and high-detail diagrams for the BSB, 
LAX, and CLT locations in Study 1. 

Experiment Design  
Study 1 was a between-subjects experiment. The inde-
pendent variable was diagram level of detail with three 
levels: low, medium, and high detail. Location depicted in 
the diagram was a co-variate with three levels: BSB, LAX, 
or CLT. Therefore, there were nine possible conditions. 



The dependent variables were the participant’s binary 
judgements on each of the 16 subregions.  
 We recruited participants from Amazon Mechanical 
Turk (MTurk). We randomly assigned each worker to one 
of the nine conditions, and we assigned 60 workers to each 
condition, for a total of 540 workers. Pilots showed that 
workers took an average of five minutes to complete the 
task, so we paid $1.21 per task, reflecting minimum wage 
in our location for 10 minutes of work. We restricted the 
task to US-based workers but used no other qualifications.  
Task and Procedure 
Each participant accepted the HIT and completed an online 
consent form. The participant saw the crowd interface and 
completed a short, self-paced tutorial. The participant then 
proceeded to examine each of 16 subregions in the grid and 
mark it as Yes / Maybe or No. After completing all 16 
judgements, the worker provided optional feedback on the 
HIT and submitted the task. This generated a unique code 
that the participant submitted to MTurk to receive pay-
ment. Based on average completion times in pilot studies, 
we set the time limit at 10 minutes, to encourage fast re-
sponses and minimize distraction. All tasks had exactly 
one correct subregion and 15 distractors. 
 We took care to design the crowd task and interface to 
be as realistic as possible from the worker’s perspective. 
Workers didn’t know whether their region contained a cor-
rect subregion, and received no feedback on their judge-
ments. Therefore, the worker experience would be the 
same for real-world scenarios where it was unknown 
whether the region contained a correct subregion. 
Data Cleaning and Analysis 
We performed simple quality control by discarding tasks 
where workers provided all yes answers (16 yes judge-
ments) and re-recruiting workers for those tasks. Aside 
from being a strong signal of low effort, an all-yes task 
does not provide any insight to prioritize the search space. 
 We found in pilot studies that individual workers 
showed high variance in task performance. After experi-
menting with different aggregation strategies (e.g., majori-
ty vote, individual averages) and worker counts, we found 
that forming triads (groups of three workers) with a one-
yes rule yielded the best results. The one-yes rule means 
that if at least one of the three workers judged a subregion 
to be a Yes / Maybe, then it would be categorized as a yes, 
while only a unanimous judgement of No across all three 
workers would be categorized as a no. We found that the 
one-yes rule is a good fit for our geolocation task, a type of 
needle-in-the-haystack problem, where false negatives are 
much worse than false positives. As a convenient byprod-
uct, the one-yes rule allows us to calculate worker agree-
ment within the triad as a signal of confidence, which sup-
ports expert prioritization. We randomly grouped the 60 

workers for each condition into 20 triads per condition in 
the results that follow. 
 Next, we compared each triad’s judgement to our gold 
standard to calculate true positives and false positives. We 
used these measures rather than the more traditional preci-
sion and recall because, as mentioned above, geolocation is 
a needle-in-the-haystack problem. 
 To calculate prioritization, we examined the set of sub-
regions marked Yes / Maybe for each triad and identified 
the highest level of agreement (low, moderate, or high). If 
the correct subregion was among those with the highest 
agreement, the triad received a prioritization score of one; 
otherwise it got a zero. Since there are three levels of prior-
itization, random chance would win 33.3% of the time. 
 We performed all statistical analysis in R. Shapiro–Wilk 
tests showed that the dependent variables failed a normali-
ty assumption (p < 0.001 for true positives, false positives, 
and prioritization). Therefore, we used Kruskal–Wallis 
tests as a non-parametric alternative to ANOVAs. We used 
Dunn’s tests to perform post-hoc analysis, with Bonferroni 
correction to adjust p-values for multiple comparisons. 

Results  
Quality 
Overall, the crowd performed well in identifying the gold 
standard subregion across all conditions, but performed 
best with the medium-detail diagram (Fig. 3). The true 
positive rate (percentage of triads that marked the correct 
subregion as a Yes / Maybe) ranged from 91.7% (low and 
high detail) to 98.3% (medium detail). The effect of level 
of detail on true positives trended towards significance, 
χ2(1) = 2.311, p = 0.129, but post-hoc tests showed no sig-
nificant differences. 

Figure 3. True positives by level of detail for Study 1. 

 For false positives (mean percentage of incorrect subre-
gions marked Yes / Maybe) a typical crowd triad narrowed 
down the search area by about half. Specifically, medium 
detail produced the fewest false positives (M = 42.3%) 
compared to low (M = 64.1%) and high (50.8%). However, 



the effect of level of detail was not significant, χ2(15) = 
10.49, p = 0.788. 
 The boxplot for false positives (Fig. 4) shows that low 
detail fared much worse than the other diagrams. The third 
quartile for low detail was 93.3%, so a worker triad with 
low detail had a 1 in 4 chance of returning almost all the 
subregions as false positives. In contrast, medium detail’s 
third quartile was 68.4%, and its median was just 33.3%. 
 

Figure 4. Boxplot showing false positives by level of detail for 
Study 1. 

Prioritization 
The agreement results for true positives show considerable 
variation. A single worker in each triad was responsible for 
marking the correct subregion anywhere from 5% to 75% 
of the time, depending on condition. Moderate and high 
agreement (two or three yes judgements) occurred 5–70% 
of the time, depending on condition. 
 There was low agreement for false positives across all 
conditions. Incorrect subregions are flagged by a single 
worker about 30–40% of the time in most conditions, and 
false positives show moderate or high agreement about 10–
35% of the time. 
 Agreement was generally effective for prioritizing the 
subregions most likely to be true positives. Correct priori-
tization of true positives ranged from 70.9% (low detail) to 
81.4% (medium) to 85.5% (high). However, level of detail 
did not significantly affect prioritization, χ2(1) = 0.232, p = 
0.630.  

Discussion  
RQ1a asked how diagram detail would affect quality. We 
found that true positives were high (greater than 90%) for 
all levels of detail, but medium diagrams performed the 
best, and this difference trended towards significance. The 
search space was reduced by about half across all levels of 
detail. Once again medium performed best, with 42.3% 

false positives, but the difference was not significant. Fur-
ther, the boxplot showed that third quartile false positives 
for low detail were over 90%, compared to under 70% for 
medium detail, and a median of just 33%. 
 RQ1b asked how diagram detail affected prioritization. 
There was considerable variation in agreement, with a sin-
gle member of a triad marking the correct subregion any-
where from 5–75% of the time. This result underscores the 
need for the one-yes rule for our problem type, where per-
fect recall is key. More importantly, we also found that all 
diagram levels led to correct prioritization 70–85% of the 
time, a substantial improvement over the 33% of random 
chance, but level of detail was not a significant factor. 
 Taken together, the above findings suggest that crowd 
triads can effectively reduce a search area by about half 
while maintaining near-perfect recall. We also saw that 
agreement within the triad can be used to double the 
chances of prioritizing the correct subregion. We also 
found evidence that the medium-detail diagram yields bet-
ter results than low- or high-detail. Given these promising 
results, we conducted a second study to investigate how the 
medium-detail diagram compared to a ground-level photo 
in crowdsourced image geolocation. 

Study 2: Reference Material 

Research Questions  
For Study 2, we asked the following research questions: 
• RQ2a: How does reference material affect quality in 

crowdsourced image geolocation? We hypothesize that 
the diagram will yield higher true positive rates because 
it distills the most important features, but it will also 
yield higher false positives because an abstraction can 
potentially match more areas due to lack of discriminat-
ing details. 

• RQ2b: How does reference material affect prioritiza-
tion in crowdsourced image geolocation? We hypothe-
size that agreement will be lower for the ground-level 
photo because spatial transformation is difficult for nov-
ices, and prioritization will be correspondingly low. 

System Design  
The system for Study 2 was largely similar to Study 1, with 
the exception of the reference material. In the aerial dia-
gram-only condition, the interface looked identical to 
Study 1, with the diagram appearing with a random orien-
tation in the top left. Buttons underneath the diagram al-
lowed for clockwise or counterclockwise rotation. In the 
ground photo-only condition, the diagram and rotation 
buttons were replaced with the ground photo. In the both 
condition, there was a toggle that allowed the user to 
switch between the diagram and the ground photo. 



Locations and Diagrams  
The locations were the same as Study 1, to enable compar-
isons and to replicate the effects of the medium-detail dia-
gram. However, because Study 2 directly compared dia-
grams to photos, we redacted the diagrams (Fig. 5) to show 
only the areas that were visible from the ground photo. 

Figure 5. Ground-level photos and redacted aerial diagrams for 
Study 2. 

Experiment Design  
Study 2 was a between-subjects experiment. The inde-
pendent variable was reference material with three levels: 
diagram only, photo only, or both. Location was a co-
variate with three levels: BSB, LAX, or CLT. Therefore, 
there were nine possible conditions. 
 The rest of the experiment design was identical to Study 
1. We recruited 540 participants from Amazon Mechanical 
Turk and randomly assigned each worker to one of the nine 
conditions (60 workers per condition). Worker had the 
same payment and qualifications as above.  
 The task, procedure, and data cleaning and analysis were 
identical to Study 1. 

Results  
Quality 
For true positives, the diagram-only condition performed 
best, with 98.3% of triads marking the correct subregion 
(Fig. 6). The both condition performed slightly less well 
with a 90% success rate. Ground photo-only trailed behind 
with 78.3% of triads finding the correct subregion. Refer-
ence material had a significant effect on true positives, 
χ2(1) = 4.111, p < 0.05. Post-hoc analysis showed that true 
positives were significantly higher for diagram-only com-
pared to ground photo-only, z = 3.476, p < 0.01. Likewise, 
the both condition performed marginally significantly bet-
ter than ground photo-only, z = 2.028, p = 0.128. There 
was no significant difference in true positives for the both 
condition vs. diagram-only, z = -1.448, p = 0.443. 
 

Figure 6. True positives by reference material for Study 2. 

 For false positives (Fig. 7), the crowd generally reduced 
the search area by about half, regardless of reference mate-
rial. Diagram-only produced slightly more false positives 
(M = 51.3%), followed by both (M = 48%) and then 
ground photo (47%), but the differences were not signifi-
cant, χ2(15) = 12.691, p = 0.626. 

Figure 7. Boxplot of false positives by reference material for 
Study 2. 

 We conducted a follow-up analysis to understand how 
workers in the both condition used the reference material. 
We found that on average, these workers spent just 28% of 
their time with the diagram, compared to 72% of the time 
with the ground photo. This result is surprising, because 
although these workers spent less than a third of their time 
looking at the diagram, they still performed almost as well 
as the diagram-only workers. 
Prioritization 
As with Study 1, we did not observe many clear patterns in 
agreement. For true positives, high agreement (three yes 
judgements per triad) and low agreement (one yes judge-
ment) both ranged from 0–70%. For false positives, we 
saw low agreement for 30–50% of triads across conditions, 
with moderate or high agreement ranging from 0–30%. 



 Prioritization of true positives using agreement was 
roughly double that of chance across all conditions, from 
57.6% (diagram-only) to 70.2% (ground photo-only). The 
type of reference material did not significantly affect the 
prioritization, χ2(1) = 0.465, p = 0.495.  

Discussion  
RQ2a asked how the type of reference material—ground 
photo, aerial diagram, or both—affected the crowd’s quali-
ty. We found that the diagram by itself results in signifi-
cantly higher true positives compared to the ground photo 
by itself. The diagram allows crowds to achieve near-
perfect performance (98.3% of triads found the correct 
subregion), whereas only 78.3% of triads found it in the 
ground photo-only condition. Our intuition is that experts 
would be less likely to trust a crowd that misses the target 
one out of every five times, so the ground photo by itself 
may not be a viable approach. 
 False positives were around 50% for all conditions and 
reference material did not have a significant effect. This 
means that in all cases, the crowd reduced the search area 
by about half. More importantly, for the diagram-only con-
dition, the search area was cut in half while still including 
the correct subregion 98.3% of the time. Further, the sig-
nificance test showed that quality is not a zero-sum game: 
the diagram condition’s excellent true positives do not 
come at a cost of more false positives. 
 RQ2b asked about how the reference material affected 
prioritization. We did not see clear patterns of agreement in 
true positives or false positives, which strengthens the case 
for our use of the one-yes rule. Agreement data allowed us 
to prioritize the correct subregions about twice as well as 
chance, regardless of the reference material used.  
 The above results indicate that the aerial diagram yields 
a significant improvement in quality for crowdsourced 
image geolocation. When a triad of workers is shown just 
the ground-level photo, they miss the correct subregion one 
out of every five times. When the photo is replaced with an 
aerial diagram, crowds found the target 98.3% of the time, 
with no increase in false positives. Crowds reduce the 
search area by half, and we can use agreement data within 
a triad to double our chances of correctly prioritizing the 
correct subregion among the subset marked Yes / Maybe. 
Therefore, the evidence suggests that crowds provided with 
a diagram could substantially augment an expert’s image 
geolocation process.  

Conclusion and Future Work 
Responsible investigation of social media requires rigorous 
verification to separate fact from fiction, including both 
accidental and deliberate misinformation. Image geoloca-
tion provides a mechanism for pursuing this truth, but it is 

an arduous task, requiring experts to notice multitudes of 
clues, gather and synthesize diverse online information, 
perform complex spatial transformations, and search large 
areas of satellite imagery for obscure details, all while un-
der time pressure. 
 This paper explored how crowdsourcing could support 
experts in a geolocation task. We contribute a new dia-
gramming technique, adapted from expert practice, that 
can be used to help novice crowds more effectively ana-
lyze satellite imagery. The levels of detail we articulate can 
also provide a starting point for non-experts to begin draw-
ing, and not just using, these diagrams. 
 We also contributed two large-scale crowdsourcing ex-
periments demonstrating the value of our work. Study 1 
showed the overall viability of our diagramming technique 
and provided evidence that that a medium-detail diagram 
yields the best quality and prioritization results. Study 2 
extended these findings by showing that aerial diagrams 
are significantly better than ground-level photos in sup-
porting crowdsourced satellite image analysis. 
 As our study locations were all city-based, our results 
primarily speak to urban geolocation tasks. Our approach 
may also extend to rural areas, which share many task 
characteristics with geolocation of urban imagery, but also 
face some distinct challenges, such as scarcity vs. overa-
bundance of image clues (Mehta, North, and Luther 2016). 
 The approach presented here seeks to minimize expert 
intervention, but future work is needed to understand how 
best to integrate the crowd’s judgements into an expert’s 
workflow. Other opportunities involve leveraging comput-
er vision tools to support crowds and experts, such as: 
 
• Context identification: Photos and videos on social me-

dia often have surrounding context suggesting a general 
location (e.g., a country or city name), but many do not. 
Systems like PlaNet could suggest high-probability sec-
tors to narrow the search space for crowds. 

• Diagram generation: Ground-to-aerial systems like 
Where-CNN could not only suggest potential location 
matches, but also extract distinctive features to help ex-
perts build a diagram more quickly and accurately.  

• Image comparison: Sketch recognition systems like 
Google’s Quick, Draw! could compare an expert dia-
gram to satellite imagery and return potential matches.  

 
 More generally, we propose that hybrid pipelines or 
mixed-initiative systems composed of crowds, experts, and 
algorithms, each complementing the others with their re-
spective strengths, offer the greatest potential to support 
complex image analysis and sensemaking. This paper of-
fers a glimpse of these possibilities in demonstrating how 
novice crowds can augment the work of experts in image 
geolocation and verification tasks.  
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